Continuing Education

GBCI® Course Sections

GBCI General CE

This section contains 212 courses.

These GBCI approved courses meet the requirements for LEED, SITES, and WELL General CE hours. General CE courses are relevant to general green building concepts, such as environmental sustainability or human health and wellness, but are not specific to any rating system or standard.

GBCI Specific CE

This section contains 33 courses.

GBCI has approved these courses as LEED, WELL, or SITES Specific. GBCI Specific courses have an explicit connection to credit categories, credits, and/or prerequisites found in any of the current LEED, WELL, or SITES rating systems. Course credit information can be found on the course details page.

GBCI General CE Courses

Displaying 150 - 174 of 212 results.

FIRST PREV [100-124] [125-149] [150-174] [175-199] [200-212] NEXT LAST

  • Multiwall polycarbonate is an extremely versatile glazing material with high impact strength, excellent thermal insulation, and long-term light transmission. Compared to glass, it is much lighter and easier to handle, offering considerable savings in transportation, labor, and building costs. This course examines how multiwall polycarbonate systems can improve thermal energy efficiency and increase daylighting within a space, enhancing occupant productivity, health, and well-being.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • Natural fibers have been used for over 2,000 years as a method to strengthen building materials. Cellulose fiber provides an excellent alternative to traditional secondary reinforcement, reducing plastic shrinkage cracks and improving durability, impact resistance, shatter resistance, and freeze/thaw resistance without compromising the appearance or finishability of a concrete surface. This course covers the evolution of fiber, its benefits, and why it is a sustainable material.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • As urban areas become denser, land values increase, and the demand for space becomes more challenging, developers are seeking alternative, innovative approaches to parking cars that allow a project to proceed while meeting all parking and sustainability requirements. Automated parking systems, parking lifts, and multilevel car stackers provide multiple benefits for developments, car parking operations, and vehicle storage facilities. High-density parking systems can help to maximize ROI with a reduced parking footprint and better building flow; reduce construction costs and operational overheads; and improve safety, security, and sustainability. This course explains the types of high-density parking systems, their sustainable advantages, and design considerations.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • Implementing daylight in buildings reduces artificial lighting energy, costs, and CO2 emissions and improves the welfare and performance of occupants. This course examines the benefits of daylight and explains how tubular daylighting devices (TDDs) can efficiently and effectively supply it in an energy-efficient manner, how they optimize all levels of daylight, and how they avoid issues such as glare and heat gain associated with windows and conventional skylights. Applicable credits and features in LEED® v4.1 Building Design and Construction, Interior Design and Construction, and Operations and Maintenance and the WELL Building Standard™ version 2 are noted. The course concludes with several sample commercial installations.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • Infrared patio heaters sustainably increase safety and comfort in outdoor entertaining areas. There are many variables in creating ambient warmth, and the effectiveness and cost of heating an outdoor space depend on the design of the selected heating option. This course looks at the available outdoor heating options and their sustainability profiles, focusing on the types, color choices, mounting methods, and control options of electric infrared heaters. It includes a review of the steps required to select the best solution.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is part of one or more "Course Collections". Click here to view the details.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • Uncorrected thermal bridging can account for 20–70% of heat flow through a building's envelope. Improving details to mitigate both point and linear thermal bridges will significantly improve energy performance. This course reviews types of thermal bridges, examines how they appear in codes and standards, and explores some mitigation concepts and principles. Calculation methods to account for thermal bridging in your projects are introduced, and a sample design project is used to demonstrate code compliance.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • As interest in cross-laminated timber (CLT) buildings grows, the market for building enclosure products as a whole has yet to fully provide the water-resistant barriers, vapor retarders, and air barriers to optimally support the unique characteristics of wood. Furthermore, there are few building enclosure design guides specific to detailing wood-framed walls and roofs. This comprehensive course fills the gaps, providing detailed information on mass timber, building enclosure issues, the vapor-permeable technology available to address wood’s unique moisture characteristics, and a how-to guide on detailing the walls and roof of the enclosure.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • Increased energy efficiency in both new and existing construction continues to be a large factor behind the design decisions we make and the materials we choose to integrate into our buildings. Concrete masonry construction can provide a wide range of benefits. This course illustrates how building envelopes constructed with concrete masonry create high-performance buildings that can exceed energy code requirements.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • As impervious land cover increases, so does the need for stormwater management. Concrete grid pavements provide increased infiltration rates, positively affecting runoff flow while decreasing erosion. This course introduces the range of grid pavement and erosion control applications and provides design and construction guidelines. Environmental performance is defined via conclusions from several research projects. Concrete grid pavements require minimal maintenance when properly designed and installed in appropriate applications. This course also includes an overview of how concrete grid paving units can be used to meet a number of LEED® v4.1 BD+C credit requirements.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • Stormwater management is a critical component in any municipality to retain and infiltrate increased runoff volumes and flow rates from developed land that creates increased impervious cover (roofs and pavements). The course discusses the hydrologic and structural design fundamentals of permeable interlocking concrete pavement (PICP) and why it is an excellent choice to help meet stormwater management goals. Discussions include the benefits of using PICP, components of PICP, design and construction considerations and how use of PICP can help earn LEED® credits.

             

     This course contains sustainable design information. See the course details page for more information.

     This course contains accessible design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • It’s easy to be overwhelmed by outdoor solar lighting specs and components, especially when every manufacturer presents its products differently. Lighting professionals can help clients put these manufacturers on an equal playing field. Providing an in-depth introduction to the technology and benefits of off-grid solar lighting, this course explores why clients choose commercial solar lighting, what components make up a solar lighting system, and the three steps lighting professionals can take to ensure their clients choose a reliable, efficient, and cost-effective solution that meets their unique expectations.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • There is no substitute for the natural beauty of newly installed tropical hardwood, but keeping it looking great and achieving the desired performance over time require careful attention to detail. Choosing the best hardwood species and specifying the appropriate fastening and finishing systems will ensure an aesthetically pleasing, low-maintenance, and successful design in terms of installation, performance, and appearance. This course discusses wood species specification, installation techniques, and finishing methods for tropical hardwoods in conventional and sustainable buildings. As well, international programs that are used to successfully determine sustainability are examined.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • Rubber has been recycled for more than a century and used in recycled rubber flooring for over 65 years. Over this time, it has been proven to be a durable and flexible product that improves numerous aspects of the built environment while benefiting the natural environment. This course examines the sustainability attributes of recycled rubber flooring, how rubber is recycled, how it is used to make flooring, its health and safety benefits, and where to use and not use the product. The course also includes an overview of how recycled rubber flooring can be used to meet a number of USGBC’s LEED® v4 BD+C and WELL Building Standard® v2 credit requirements.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • ICF construction is cost effective and sustainable, and is a superior way to build stronger, quieter, healthier, and more energy-efficient commercial structures. This course explores insulated concrete form (ICF) construction, describing the forms themselves and their construction, performance, and sustainable benefits. Also presented are design guidelines, the installation process, flooring systems, and commercial project applications.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • Through sustainable management, the forests of New England have had a remarkable comeback since the 1830s, with eastern white pine being the most represented softwood in these forests. This light, yet strong wood species has been used for generations and today, meets the requirements of a renewable and sustainable building material. This course reviews eastern white pine’s contribution to sustainability, its grading rules, wood products, and many applications.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • Plantable permeable paving systems continue to grow in scope and practicality as we search for ways to reduce our carbon footprint, improve water quality, diminish flooding and erosion, reduce the urban heat island from reradiated heat in our cities and environment, and add attractive open space to building sites and neighborhoods. This course looks at plantable permeable pavement system types, their use, and how they can help achieve sustainability goals.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • Cellulose insulation has been used successfully by builders and designers for hundreds of years to provide comfort and warmth. Today, builders and designers also consider sustainability principles, climate change, occupant health and wellness issues, energy conservation, and carbon sequestration. Advanced cellulose insulation addresses all those areas as well. This course explains its environmental benefits, including its carbon capture ability, how it improves occupant health and well-being, and its numerous high-performance thermal, acoustic, and fire-resistant attributes.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is part of one or more "Course Collections". Click here to view the details.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • With the demand for sustainable power on the rise, building owners and homeowners alike are turning to solar power as a supplemental power generator. Choosing the right platform for the solar panels is a critical step in the design process and can have a significant impact on both initial and long-term costs. This course discusses the basics of photovoltaic systems, including the components and rooftop applications. Comparisons between traditional roofing and standing seam metal roofing platforms are examined, and the benefits of a nonpenetrating clamping system are discussed.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • Building a stronger connection with nature is critical for humans to maintain health and well-being. Composite wood decking is a durable, environmentally sustainable product that can help build links with nature through applications including home outdoor rooms, roof gardens, healing spaces, and public boardwalks in green spaces.

             

     This course contains sustainable design information. See the course details page for more information.

     This course contains accessible design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • Bamboo is a versatile building material that brings warmth and character to indoor applications such as flooring, furniture, and wall and ceiling panels; an innovative process also allows bamboo to be used outdoors in decks, soffits, and siding. This course reviews the material technologies that make bamboo products with reduced environmental impacts and better performance than traditional materials and discusses their potential to meet requirements of the LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is part of one or more "Course Collections". Click here to view the details.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • The materials we use have a significant impact on the environment, our communities, and our health. Consequently, material transparency—wherein manufacturers disclose vital sustainability information about their products—is an increasingly necessary element of modern life. This course examines the tools and resources that are available for both manufacturers and the A&D community that effectively communicate transparency information and optimization of building products. Also reviewed are the benefits of the new-generation insulated metal panels (IMPs) designed to achieve a trusted range of health and wellness certifications.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • In the fight against climate change, efforts intensify against the planet’s number one enemy—carbon dioxide. The building industry will play a significant role in these efforts. Embodied carbon—the global greenhouse gas emissions generated from sourcing raw material and processing, manufacturing, transporting, and installing building materials—will be the target over the next decade. This course will define embodied carbon, its impact on greenhouse gas emissions, the construction industry's impact, and the methods and tools that building designers can employ to limit embodied carbon.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • Main entrance air curtains are used by architects and engineers in commercial, institutional, and industrial settings to both improve energy efficiency and protect occupant comfort and well-being. This course reviews the research that led to air curtains being approved as an alternative to vestibules in ASHRAE 90.1-2019 and other building codes, as well as how air curtains on main entries contribute to sustainability goals around energy conservation, public health, and indoor air quality.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • An air curtain, also known as an air door, employs a controlled stream of air aimed across an opening to create an air seal. This seal separates different environments while allowing a smooth, unhindered flow of traffic and unobstructed vision through the opening. This course discusses how air curtains work and why they can contribute to occupant comfort, energy efficiency, and indoor air quality when the door is open. It also reviews how air curtains improve whole-building energy efficiency versus conventional methods.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

  • Simultaneously improving indoor air quality (IAQ), decarbonizing buildings, and increasing resilience to outdoor pollutants has been extremely challenging because alternatives to conditioning large volumes of outside air to improve IAQ are not well understood. This course aims to change that by introducing a four-step Clean First framework for sustainable IAQ. This framework achieves better indoor air quality and energy efficiency with improved resilience to outside air pollutants. The course also provides recommendations for implementing a Clean First framework.

             

     This course contains sustainable design information. See the course details page for more information.

     This course is ONLINE: SELF-PACED. Experience it on your own schedule, at your convenience.

Displaying 150 - 174 of 212 results.

FIRST PREV [100-124] [125-149] [150-174] [175-199] [200-212] NEXT LAST