Green Building Certification Inc.

The "GBCI CE" mark indicates that the course, as described in the application and materials submitted by the provider to USGBC, holds a General CE designation and meets the General CE conditions set out in the USGBC Education Partner Program course guidelines.

Click to Learn More About GBCI

Displaying 1 - 25 of 242 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    In the fight against climate change, efforts intensify against the planet’s number one enemy—carbon dioxide. The building industry will play a significant role in these efforts. Embodied carbon—the global greenhouse gas emissions generated from sourcing raw material and processing, manufacturing, transporting, and installing building materials—will be the target over the next decade. This course will define embodied carbon, its impact on greenhouse gas emissions, the construction industry's impact, and the methods and tools that building designers can employ to limit embodied carbon.

  • ( ~ 1 hour ) 

    This course examines bamboo as a sustainable construction material by focusing on its properties, environmental advantages, and innovative applications. Participants will explore responsible sourcing, manufacturing practices, and key certifications. The course also covers advanced products such as thermally modified and high-density bamboo. Professionals will gain the knowledge required to integrate bamboo into projects that align with performance and sustainability standards.

  • ( ~ 1 hour ) 

    Recycled rubber flooring is an environmentally responsible material that outlasts many types of traditional commercial flooring products when exposed to normal foot traffic stress. Interior and exterior recycled rubber surfacing products are explored in terms of their sustainable design benefits and applications. The program includes discussions on rubber manufacturing, postconsumer tires, and green building certification systems.

  • ( ~ 1 hour ) 

    A large portion of new commercial and residential buildings built today are equipped with clear, floor-to-ceiling glass. Does this new expansive area of glass lead to daylight optimization? This course explains the impacts of daylighting on human health and building occupant comfort. Proactive and reactive automated shading systems are discussed, and the course explains how a properly designed shading system can reduce whole-building energy consumption. Automated shading systems in projects of various scopes and scales are also discussed.

  • ( ~ 1 hour ) 

    The use of sustainable materials and products during building design will become the standard within the construction industry, and environmental product declarations (EPDs) and Health Product Declarations (HPDs) help architects and owners make informed decisions for their projects. Insulated metal panels— a prime example of a sustainable product—are one of the most cost-effective solutions to reduce energy and greenhouse gases.

  • ( ~ 1 hour ) 

    Slate has been used for centuries as a long-lasting building material, and its natural beauty is unsurpassed. Today, rainscreen cladding systems have been developed to adapt natural slate to new architectural demands for sustainable building design approaches. This course explores the energy efficiency and moisture management benefits of a rainscreen system in combination with the durability and versatility of slate. The different designs and fastening systems are reviewed, and case studies demonstrate the advantages and possibilities for sustainable and beautiful slate projects.

  • ( ~ 1 hour ) 

    This presentation provides an overview of sustainable materials for the bath, including production, performance, maintenance, and frameworks for assessment, and focuses on recycled copper, sustainably made concrete, FSC®-certified bamboo, and reclaimed wood.

  • ( ~ 1 hour ) 

    This course explores insulating concrete forms (ICFs) as part of a sustainable construction system by covering their benefits, applications, and design considerations. The course delves into the structural properties, energy efficiency, and environmental impact of ICFs. Also presented are best practices for integrating ICFs into various architectural projects and a concise overview of installation steps.

  • ( ~ 1 hour ) 

    Architects and other design professionals have a critical role to play in reducing global greenhouse gas emissions through building design and product selection. The urgent need to reduce both operational and embodied carbon means that building designers must be familiar with transparency documents that facilitate low-carbon product selection. In this course, we review the types of carbon of concern, transparency documents that provide critical information, and tools for sourcing embodied carbon information. We also look at the contribution of insulated metal panels to both low embodied and low operational carbon buildings.

  • ( ~ 1 hour, 15 minutes ) 

    This course introduces accessibility from Canadian and US perspectives. It covers a few specific technical accessibility requirements and compares the differences when referencing Canadian or US design standards, such as the National Building Code of Canada (Canada's Model Code) or the Americans with Disabilities Act (ADA) (the United States accessibility regulation), while reinforcing the intent of good design that is not always outlined by a code or standard. The seven principles of universal design are also discussed.

     In order to download this course, a USD $35.00 fee must be paid.

  • ( ~ 1 hour ) 

    Building a stronger connection with nature is critical for humans to maintain health and well-being. Composite wood decking is a durable, environmentally sustainable product that can help build links with nature through applications including home outdoor rooms, roof gardens, healing spaces, and public boardwalks in green spaces.

  • ( ~ 1 hour, 15 minutes ) 

    In the wake of the green movement, combined with rising energy costs, building sustainability has become an important topic. This course examines how foil-faced polyisocyanurate (polyiso) continuous insulation can function as a multiple control layer, providing a building with an air and water-resistive barrier and a thermal control layer. Additionally, this course reviews building codes and standards for meeting the continuous insulation requirements in steel stud building envelope designs, the benefits of using polyiso insulation in wall assemblies, and how polyiso insulation meets NFPA 285 requirements.

  • ( ~ 1 hour ) 

    Growing and concentrating populations, shifting weather patterns, increasing frequency and ferocity of storm events, disappearing water supplies, and rising costs have made providing potable water and managing other water-related issues increasingly difficult for many communities. This course explores their many water issues and how they adapt their management practices to address constantly evolving water conditions.

  • ( ~ 1 hour ) 

    Embodied carbon represents a significant portion of the building industry’s carbon footprint; it is essential to utilize low-carbon construction processes and materials now, before the tipping point of the climate crisis is reached. This course discusses the use of LCAs and EPDs as tools to measure the carbon footprint and environmental impacts of building products and how architects and designers can utilize them to make sustainable choices in the design stages of a project. The course also looks at the growing relevance of EPDs in policies and green building standards, such as the Building Design and Construction rating systems of LEED® v4.1 and the upcoming LEED v5.

  • ( ~ 1 hour ) 

    Industrial-strength ladders must provide functional safety for users in varied and demanding building environments. Aluminum ladders are up to the challenge of virtually any application thanks to aluminum’s high strength-to-weight ratio, durability, and corrosion resistance. This course reviews ladder types and safety considerations and discusses how the sustainability benefits of aluminum along with its other attributes make it an ideal material for heavy-duty ladders.

  • ( ~ 2 hours, 30 minutes ) 

    The magnitude and negative impacts of solid waste have become increasingly apparent, especially in regard to plastics and their presence in the oceans. As a result, there have been many approaches to rethinking what constitutes waste and how it can be avoided or used/managed in a more sustainable manner. This course explores these emerging approaches to waste management planning and illustrates them with current examples of solid waste management plans and initiatives from various countries around the globe. In the first part of this course, we’ll dig into the impact of our growing waste problem and some methods for rethinking this waste. In the second, we’ll provide guidance for the design of a sustainable community waste management plan.

  • ( ~ 1 hour ) 

    Lack of secure bicycle parking and storage is one of the top barriers to increased bicycle ridership. However, there is much more to selecting functional and appropriate bike storage than installing a few racks at the building sidewalk. This course examines best practices for bicycle racks and shelters for indoor and outdoor bicycle parking and storage, including typical municipal guidelines and regulations, incentives, guidance on shelters, and rack planning and design.

  • ( ~ 1 hour ) 

    Concrete is an essential part of modern buildings. As net zero energy buildings become more common, it is crucial to find ways to reduce concrete’s carbon footprint without losing the performance characteristics that make it valuable to the building team. This course explains the sources of concrete’s carbon footprint and explores strategies for reducing embodied carbon and operational carbon in precast sandwich wall panels and insulated architectural cladding.

  • ( ~ 1 hour ) 

    Originally developed to reduce solar heat gain from entering through a pane of glass, window films in today’s market provide UV protection, reduce glare, reduce fading, increase occupant comfort, offer safety and security, and yield energy savings. This course evaluates the performance of different types of solar control window films and offers daylighting strategies for commercial, retail, and residential building and architectural applications.

  • ( ~ 1 hour ) 

    The building envelope is the physical separator between the conditioned and unconditioned environment of a building and provides resistance to air, water, heat, light, and noise transfer. As a thermal barrier, spray polyurethane foam (SPF) offers numerous opportunities to contribute to building envelope performance and indoor air quality in several project types. This course presents the sustainable aspects of SPF, SPF fire and strength testing, and the benefits of SPF in below- and above-grade and rooftop applications.

  • ( ~ 1 hour, 30 minutes ) 

    The parking component of a development is typically considered a “necessity,” but have you considered how much the first and last impressions count? This course shows how automated technology turns parking into an all-around winning proposition through increased ROI, unsurpassed safety for drivers and vehicles, sustainable design with a drastically reduced environmental footprint, and a premium valet experience.

  • ( ~ 1 hour ) 

    Designers, building users, and managers are increasingly focused on building and occupant health as well as energy conservation. This course explores how mixed-mode (hybrid) ventilation systems address all these issues by improving the ratio of fresh air introduced into buildings while reducing energy needs and costs. It describes the benefits, elements, and workings of these systems and provides design guidance and illustrative case studies.

  • ( ~ 1 hour ) 

    The savings that water conservation measures can provide are real and practical and offer enormous untapped potential. One of the best ways to boost conservation really hasn’t been thoroughly utilized, yet it’s right here at our fingertips: faucets. This course provides an overview of commercial faucets, including the evolution of the modern faucet, design and installation considerations, and the faucet’s impact on water conservation and green building programs.

  • ( ~ 1 hour ) 

    Operable wall systems integrate the indoors and outdoors and define interior spaces, providing flexibility and additional usable area without increasing a building’s footprint. Occupants benefit from expansive daylighting and views as well as quick access to fresh air. This course describes the types of operable wall systems, how they contribute to sustainable design, and the various options and considerations for selecting the correct system.

  • ( ~ 30 minutes ) 

    As synthetic turf systems evolve as functional and aesthetic landscape solutions, conversations about sustainability, particularly environmental impacts, are essential. This course addresses the sustainability of synthetic turf from the triple-bottom-line perspective: profit, people, and planet. Also discussed is how synthetic turf can contribute to achieving certification in LEED® v4.1 Building Design and Construction, Sustainable SITES Initiative® v2, and the WELL Building Standard™ version 2.

Displaying 1 - 25 of 242 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST