Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 1 - 25 of 400 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Ventilation grilles influence HVAC system performance but can pose aesthetic challenges for designers. Custom grilles made with modern fabrication techniques employ a variety of materials and finishes to create solutions that enhance and fully integrate with architectural interiors. This course discusses the basic mechanics of effective air distribution in buildings, performance characteristics of grilles, grille types, and custom design options.

  • ( ~ 1 hour ) 

    The acoustical comfort level in the workplace is a key measure of the quality of the indoor environment for building occupants. This course explores key concepts and characteristics of sound, as well as speech intelligibility and privacy and their associated acoustical remedies. Also presented is the use of sound absorbers and diffusers as acoustical solutions to noise problems.

  • ( ~ 1 hour ) 

    Exterior wall systems are the dividing line between the exterior and the interior and must address several fundamental performance goals of the building envelope. This course reviews traditional rainscreen design and examines why, with its single-component construction, an insulated composite backup wall system is a vast improvement over traditional multicomponent building technology.

  • ( ~ 1 hour ) 

    Incorporating sustainable building materials into design practices is essential for creating environmentally responsible, healthy, and resilient built environments. Thermal modification is a tested and proven chemical-free process for increasing the dimensional stability and long-term performance of wood while preserving its natural beauty. Presented are the thermal modification process, the attributes, applications, and favorable environmental impacts of thermally modified wood, and how thermally modified wood can contribute to achieving certification in LEED® v4.1 Building Design and Construction and Interior Design and Construction, Sustainable SITES Initiative® v2, the WELL Building Standard™ version 2, and the Living Building Challenge (LBC).

  • ( ~ 1 hour ) 

    Vinyl membrane decking can prolong the life cycle of various building components; however, performance and durability depend on vinyl membrane selection, specification, and installation. Fortunately, vinyl membrane manufacturers can support architects, contractors, and specifiers through all phases of the project to ensure a successful outcome. This course examines walkable, waterproof roof deck membranes and roofing systems and includes discussions on system characteristics, design considerations, and how to properly specify roof deck membrane systems. 

  • ( ~ 1 hour, 15 minutes ) 

    Residential solar power generates clean energy, reduces carbon footprint, protects against rising electricity rates, and protects property from outages, but it is only effective during daylight hours. Adding battery storage to a solar system—called solar plus storage—removes this limitation and moves a home closer to energy independence. In this course, we will review the components of a solar-plus-storage system, including selection considerations for residential rooftop solar and DC-coupled solar batteries. The course also reviews the extended system of monitoring and DC charging.

  • ( ~ 1 hour, 15 minutes ) 

    ICF construction is cost effective and sustainable, and is a superior way to build stronger, quieter, healthier, and more energy-efficient commercial structures. This course explores insulated concrete form (ICF) construction, describing the forms themselves and their construction, performance, and sustainable benefits. Also presented are design guidelines, the installation process, flooring systems, and commercial project applications.

  • ( ~ 1 hour ) 

    This course explores how understanding disability can guide the creation of accessible and inclusive spaces. It examines access opportunities in educational and public environments, with an emphasis on strategies that go beyond code compliance. These approaches can help meet credit requirements in the LEED® v5 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2 by improving usability, promoting occupant well-being, and reducing long-term barriers through design solutions.

  • ( ~ 1 hour ) 

    Today’s building professionals seeking better moisture management and energy efficiency from the exteriors of their projects are turning to rainscreens as a solution to both. Wood-plastic composite (WPC) provides a durable and long-lasting material suitable for use in rainscreen systems, decks, railings, and more. Reviewed in this course are the manufacturing process, performance and green benefits, and installation of WPC cladding that is fully capped with a polymeric plastic “shield,” providing long-term resistance to moisture, staining, and fading.

  • ( ~ 1 hour ) 

    Keeping bathrooms and kitchens clean and hygienic is essential to health and well-being but can be challenging in busy family homes. This course introduces some basic principles of home hygiene, provides an overview of the most effective cleaning strategies, and shows how contemporary kitchen and bathroom technology and design innovations can make hygienic cleaning substantially easier. Technologies discussed include touchless activation, intelligent toilets, bidet seats, and antimicrobial surfaces.

  • ( ~ 1 hour ) 

    Understanding building physics is critical to proper building envelope design. Examined here are practical concepts for the building designer, including how cladding systems perform across different climate zones and applications. Environmental control layers and hygrothermal loads are reviewed, as is the concept of perfect/universal wall design. The course focuses on how single-component insulated metal panels (IMPs) function as a perfect/universal wall, simplifying wall system design and installation.

  • ( ~ 1 hour ) 

    Composite roofing materials have been available for over a decade, providing a cost-effective alternative to traditional slate and shake roofing systems. In this course, design professionals can thoroughly explore the sustainable and versatile characteristics of composite roofing solutions. Also discussed are the benefits of composite roofing systems, such as their long life cycle, durability, and adaptability for various applications and environments.

  • ( ~ 1 hour ) 

    The enhanced need for water conservation and a decrease of harmful runoff resulting from lawn maintenance has pushed the demand for environmentally-friendly alternatives for landscaping and recreational areas. Explored in this course are the uses, benefits, and specification and installation considerations of artificial turf products that replicate a natural grass look and feel in any environment

  • ( ~ 1 hour ) 

    Bamboo is a versatile, strong material with a warm aesthetic that suits an array of interior design styles. This course looks at how bamboo is sustainably sourced to produce low-VOC products such as flooring, cladding, and three-ply architectural wall and ceiling panels. Project examples highlight a CNC routing method that produces panels with eye-catching patterns of varying depths and levels of intricacy. The course also examines how bamboo products may apply to several credits and features in the LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    Resin-mineral composite is an exceptional building material for exterior applications and embodies the enduring appeal of wood without its challenges. The composition, design options, and performance attributes of resin-mineral composite (RMC) decking and siding are explored. Also discussed are product and manufacturer sustainability, product evaluations, and the range of applications suitable for resin-mineral composite.

  • ( ~ 1 hour ) 

    Although known for being a strong and versatile building material, there are a number of factors that affect the sustainability of concrete, and a variety of measures that can be taken to increase its durability and extend its service life, thus protecting the health, safety, and welfare of the users. This course discusses the environmental impact of concrete and some of the main causes of concrete deterioration, and examines how crystalline waterproofing technology can be employed to increase the durability and sustainability of concrete.

  • ( ~ 1 hour ) 

    The look of wood adds warmth and aesthetic appeal to building designs that other materials, such as masonry, metals, and glass, cannot replicate. However, since natural wood may not be suitable for Class 1—3 commercial projects, innovative composite and synthetic materials have been developed to overcome the limitations of real wood. This course provides a comprehensive examination of eight wood-inspired design technologies that mimic the appearance of natural wood while meeting fire performance standards. The role of wood-plastic composite (WPC) hybrid products in fulfilling the requirements of the LEED® v5 Building Design and Construction (BD+C) rating system is also reviewed.

  • ( ~ 1 hour ) 

    Third-party environmental product declarations (EPDs), using a life-cycle analysis (LCA) approach, provide a comprehensive analysis and quantification of a product’s sustainability. This course examines how EPDs can inform sustainable site furniture selection and how the use of sustainable site furniture can contribute to meeting various credit requirements of LEED® v4.1 Building Design and Construction, Sustainable SITES Initiative® v2, and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    Homeowners are increasingly interested in creating outdoor living spaces that enhance their enjoyment and increase their homes’ energy efficiency. This course outlines how retractable screens offer sustainable design solutions for homeowners, architects, and builders. Topics discussed include screen components and how retractable screens offer protection from insects and UV rays and contribute to enhancing a home’s energy efficiency. Various case studies focusing on sustainability are examined.

  • ( ~ 1 hour ) 

    The surface coating is the first line of defense in prepainted metal, and one of the most important elements to consider as part of a metal purchase. Selecting the right coating, finish, and paint system can affect product lifespan, energy efficiency, and aesthetic appeal. This course discusses the composition of prepainted metal, its application and performance, and examines the building and environmental factors that may influence the type of paint system specified.

  • ( ~ 1 hour ) 

    With the global rise in natural disasters and the increasing need for sustainable environments, resiliency has become a necessity in the design and building industries. This course provides an overview of resilient design, how it relates to building codes and standards, and the role it plays in ensuring the safety and sustainability of the built environment. It examines the role masonry construction plays in meeting resilient design goals and the inherent properties of masonry that make it resilient and provides examples and case studies of resilient design strategies.

  • ( ~ 1 hour ) 

    The popularity of thin gauged porcelain tile has soared because of its large slab size, beauty, durability, sustainability, and versatility. These tiles are suitable for many environments, especially hospitality, institutional, and office applications. This course explores their many uses, their economic and environmental benefits, and proper installation techniques.

  • ( ~ 1 hour ) 

    Building science experts acknowledge the need for drainage in both vertical and horizontal applications in order to eliminate moisture issues and extend the life of the building. This course examines foundation wall, green roof, and plaza deck applications and discusses the factors that impact drainage, including soil permeability, saturation, land cover, and loading. Flow rate standards are discussed, and drainage composite mat installation is explained.

  • ( ~ 1 hour ) 

    This course explores insulating concrete forms (ICFs) as part of a sustainable construction system by covering their benefits, applications, and design considerations. The course delves into the structural properties, energy efficiency, and environmental impact of ICFs. Also presented are best practices for integrating ICFs into various architectural projects and a concise overview of installation steps.

  • ( ~ 1 hour ) 

    Movable pool and spa floor technology enables an entirely flexible, multifunctional living and recreational space to complement any architectural vision. Presented here are types of movable pool floors, pool floor technology, options and amenities, and safety and sustainability performance considerations.

Displaying 1 - 25 of 400 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST