Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 1 - 25 of 400 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    With the advent of “cool” single-ply roofs featuring heat-reflective exterior surfaces and the use of mechanical attachment, new questions have emerged concerning the internal forces at play within the roofing system, especially in regard to vapor movement and the potential for moisture condensation within the roof. This course reviews the fundamentals of vapor movement in roofing systems, current roof condensation research and the tools available to assess roof condensation. It also provides the building design professional with strategies to deal effectively with moisture movement within the roofing system.

  • ( ~ 1 hour ) 

    The United Nations has set 2030 as the deadline for member nations to achieve the 17 Sustainable Development Goals. The construction industry has set complementary goals, including the AIA 2030 Commitment to reach net zero emissions in the built environment by 2030. This course discusses how circular economy building products are necessary to achieve sustainable design goals and presents the case study of Kohler WasteLAB, a small manufacturing business within Kohler Company that creates beautiful products for the home from waste.

  • ( ~ 1 hour ) 

    Incorporating sustainable building materials into design practices is essential for creating environmentally responsible, healthy, and resilient built environments. Thermal modification is a tested and proven chemical-free process for increasing the dimensional stability and long-term performance of wood while preserving its natural beauty. Presented are the thermal modification process, the attributes, applications, and favorable environmental impacts of thermally modified wood, and how thermally modified wood can contribute to achieving certification in LEED® v4.1 Building Design and Construction and Interior Design and Construction, Sustainable SITES Initiative® v2, the WELL Building Standard™ version 2, and the Living Building Challenge (LBC).

  • ( ~ 1 hour ) 

    At their root, metal roofs and walls made from steel, copper, zinc, or aluminum have a lower environmental impact because of their ability to be recycled and reused. This course focuses on the green aspects of standing seam metal roofs, and in particular, their cool roof characteristics. Also addressed are the implications of heat islands, what constitutes construction of cool roofs/walls and how they work, some rules of thumb for understanding cool metal roofing, roof slope impacts on performance, and codes, ratings, and standards that apply to designing cool roofs/walls.

  • ( ~ 1 hour ) 

    Concrete is an essential part of modern buildings. As net zero energy buildings become more common, it is crucial to find ways to reduce concrete’s carbon footprint without losing the performance characteristics that make it valuable to the building team. This course explains the sources of concrete’s carbon footprint and explores strategies for reducing embodied carbon and operational carbon in precast sandwich wall panels and insulated architectural cladding.

  • ( ~ 1 hour, 15 minutes ) 

    This course is designed to educate and raise awareness among landscapers and architects to assist them in making correct turfgrass selections for their projects. The focus is on warm-season sod turfgrasses suited for the southern and midsection tiers of the United States. The selection criteria and best practices for sodding and maintaining turfgrass are reviewed, along with an introduction to proprietary cultivars designed to offer improved aesthetics, greater tolerances, and fewer inputs.

  • ( ~ 1 hour ) 

    Thermoplastic single-ply roofing systems have over a half century of proven performance. This course outlines their history and the various types of membranes that have been developed and identifies the individual attributes and benefits of each type. This highly illustrated course also discusses the cooling benefits of white and green roofs, the numerous single-ply attachment and warranty options, and descriptions of sample installations.

  • ( ~ 1 hour ) 

    This course explores design strategies for tailoring elevator interiors to project-specific needs, compares original equipment manufacturer (OEM) elevator interiors, bespoke elevator interiors, and configurable elevator interior systems (CEISs), and examines best practices for specifying CEISs to enhance safety, performance, and visual continuity.

  • ( ~ 1 hour ) 

    Modern interior spaces often feature open areas and hard surfaces. What should be comfortable rooms in these spaces can become unpleasant from noise and echo or sound reverberation. This course discusses how melamine foam can be used to improve the sound quality in a space. The different options for melamine foam products are discussed along with their installation methods. This course also provides an overview of the sustainability features of sound-absorbing melamine foam.

  • ( ~ 1 hour ) 

    Material transparency is a growing initiative in the green and healthy building arena. This course reviews legislation that provides the baseline for healthy and sustainable materials and discusses the limitations of those regulations. It also explores the predominant green building programs and how material transparency can help achieve certification. Learners will leave this course with an understanding of how to access, analyze, and apply material transparency to their projects and leverage initiatives to support a healthier, more sustainable building industry.

  • ( ~ 1 hour, 15 minutes ) 

    In the wake of the green movement, combined with rising energy costs, building sustainability has become an important topic. This course examines how foil-faced polyisocyanurate (polyiso) continuous insulation can function as a multiple control layer, providing a building with an air and water-resistive barrier and a thermal control layer. Additionally, this course reviews building codes and standards for meeting the continuous insulation requirements in steel stud building envelope designs, the benefits of using polyiso insulation in wall assemblies, and how polyiso insulation meets NFPA 285 requirements.

  • ( ~ 1 hour, 15 minutes ) 

    Uncorrected thermal bridging can account for 20—70% of heat flow through a building's envelope. Improving details to mitigate both point and linear thermal bridges will significantly improve energy performance. This course reviews types of thermal bridges, examines how they appear in codes and standards, and explores some mitigation concepts and principles. Calculation methods to account for thermal bridging in your projects are introduced, and a sample design project is used to demonstrate code compliance.

  • ( ~ 1 hour ) 

    Not only is standing seam metal roofing (SSMR) robust and durable, but the seam itself also provides a convenient anchorage point for the mounting of rooftop equipment. This course reviews the features and advantages of SSMR in terms of durability and sustainability, and the appropriate attachment solutions for mounting equipment. The course focuses on nonpenetrating roof seam clamps and design considerations for their use with snow retention and solar panel systems.

  • ( ~ 1 hour ) 

    Polyisocyanurate (polyiso) insulation is one of North America’s most widely used, readily available, and cost-effective insulation products. While polyiso is currently most commonly known for its use on roofs and walls, this course focuses on the many benefits of using it in below-grade installations in order to meet energy codes, maximize the building foundation’s thermal performance, and extend the overall life of the structure. The course explores the requirements for three primary characteristics of any below-grade insulation—thermal performance, water absorption, and load capacity—and describes how polyiso meets or exceeds those requirements and protects the foundation waterproofing system.

  • ( ~ 1 hour ) 

    This course explores how understanding disability can guide the creation of accessible and inclusive spaces. It examines access opportunities in educational and public environments, with an emphasis on strategies that go beyond code compliance. These approaches can help meet credit requirements in the LEED® v5 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2 by improving usability, promoting occupant well-being, and reducing long-term barriers through design solutions.

  • ( ~ 1 hour ) 

    When designing noise control measures for a building, it is critical to look beyond the sound transmission class (STC) and impact insulation class (IIC) ratings in order to create an ideal environment that promotes occupant well-being, protects their hearing, and fulfills the project’s needs. This course provides an overview of noise control principles, construction composites, and design methodologies that reduce noise, with an emphasis on performance-oriented designs requiring third-party acoustical consultants.

  • ( ~ 1 hour, 30 minutes ) 

    Within building spaces, noise can be reduced by using materials or assemblies that isolate sound or mitigate its transmission. To do this, it is important to understand how sound moves through building materials and partitions and the impact of sound mitigation products. In this course, we look at the basics of sound as well as techniques and products to prevent sound transmission.

  • ( ~ 1 hour ) 

    Building science experts have acknowledged the need for both drainage and ventilation in exterior wall systems in order to eliminate moisture issues and extend the life of buildings. This presentation reviews the concepts of rainscreen technology and the solutions for compliance with a focus on engineered rainscreen drainage and ventilation mats used in direct-applied and ventilated wall designs. Prerequisites: No Course Level: Introductory

  • ( ~ 1 hour ) 

    People are captivated by birds, and for many, they hold intrinsic value. However, millions of birds collide with glass every year, significantly impacting avian populations. This course examines the ecological services that birds perform that impact human wellness and safety and reviews how bird-friendly glass can mitigate collisions. Various bird-friendly glass examples are also identified, and design guidelines and existing legislation mandating bird-friendly buildings is discussed.

  • ( ~ 1 hour, 15 minutes ) 

    As natural gas lines are being phased out for new development and for those who want to move away from burning fossil fuels, it’s becoming critical for homeowners, builders, specifiers, and architects to understand the flexible application of electric heating solutions. Electric heat is a convenient way to reduce energy costs and provide reliable heating options for commercial and residential heating systems that increase occupant safety, comfort, and well-being. This course examines multiple electric heating options to meet consumer needs and provides solutions to common heating concerns.

  • ( ~ 1 hour, 15 minutes ) 

    The Environmental Product Declaration (EPD) is not just an idea about how to “grade the greenness” of products; it is a well-developed, globally recognized way to make responsible comparisons and decisions regarding sustainable material design and continuous improvement. This course discusses the concept of the EPD as applied to building materials and how to integrate EPDs into design and product selection decisions. Detailed information from different thermal insulation EPDs is used to demonstrate how thermal insulation provides a unique and significant payback in terms of energy and environmental impacts.

  • ( ~ 1 hour ) 

    Stairs are often a prominent feature or even the focal point of an architectural design project and play a vital role in creating an aesthetically pleasing interior atmosphere, or an exterior welcoming point to a residential, commercial, or industrial building. This course provides an overview of the many benefits of installing precast concrete stair treads and landings, how to detail and specify them, and how to address related building code, design, and construction requirements.

  • ( ~ 1 hour ) 

    Retrofitting and replacing roof systems are essential aspects of the construction industry and offer opportunities to reduce a building’s energy consumption. Sustainable retrofitting of roofs with durable, energy-efficient materials helps reduce waste and conserve resources while promoting ecofriendly building practices. This course gives an overview of expanded polystyrene (EPS) insulation and innovative roof systems that are designed to enhance building efficiency.

  • ( ~ 1 hour, 15 minutes ) 

    Concrete masonry units (CMUs) are made from dry-cast concrete, which uses less cement and sequesters carbon at a faster and greater rate than wet-cast concrete. This course begins with an overview of concrete products and the differences between dry- and wet-cast concrete, then explores the relationship between concrete and the carbon cycle, recent research into CMU sequestration rates, and the results of mini life-cycle assessments comparing different wall systems. Finally, some practical strategies for further reducing embodied carbon are reviewed.

  • ( ~ 1 hour ) 

    Railing systems perform various functions, meeting safety requirements and serving as a key component of a building’s aesthetic. This course includes a discussion of the strengths and weaknesses of aluminum and structural vinyl railing systems, how they are made, and how they are used in the building industry, including a detailed summary of how they meet various code requirements.

Displaying 1 - 25 of 400 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST