Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 1 - 25 of 400 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Bamboo is a versatile building material that brings warmth and character to indoor applications such as flooring, furniture, and wall and ceiling panels; an innovative process also allows bamboo to be used outdoors in decks, soffits, and siding. This course reviews the material technologies that make bamboo products with reduced environmental impacts and better performance than traditional materials and discusses their potential to meet requirements of the LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    While the bathroom was once a strictly utilitarian space, a growing trend among luxury consumers is to create a custom, spa-like wellness retreat right in the home. Surveys find that luxury consumers value functional and design excellence, uniqueness that reflects a creative side, and exceptional quality and value. This course examines the shower products available that help to create a personalized, multisensory wellness experience with beautifully designed pieces that meet water efficiency standards.

  • ( ~ 1 hour ) 

    Bamboo is a versatile, strong material with a warm aesthetic that suits an array of interior design styles. This course looks at how bamboo is sustainably sourced to produce low-VOC products such as flooring, cladding, and three-ply architectural wall and ceiling panels. Project examples highlight a CNC routing method that produces panels with eye-catching patterns of varying depths and levels of intricacy. The course also examines how bamboo products may apply to several credits and features in the LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2.

  • ( ~ 1 hour, 15 minutes ) 

    Specifying door products that are durable enough to withstand the rigorous demands of high-traffic applications in the healthcare and hospitality industries is crucial to the long-term success of each installation. This course reviews traditional doorway materials and doorway protection options, and provides design solutions that utilize engineered polyethylene terephthalate (PETG) components that extend the life of the door assembly and minimize health and safety issues for the building occupants.

  • ( ~ 1 hour ) 

    Authorities having jurisdiction all over the world, including in all 50 US states, have mandated photoluminescent egress path markings to support safe evacuation of high-rise buildings in the case of total power failure. This course reviews photoluminescent egress path marking requirements in the model International Building Code® and International Fire Code® (2015, 2018, 2021) and identifies compliant photoluminescent path marking products. The course also discusses recommended best practices that exceed code requirements, which will reduce building operation costs and improve occupant and first responder safety.

  • ( ~ 1 hour ) 

    Growing and concentrating populations, shifting weather patterns, increasing frequency and ferocity of storm events, disappearing water supplies, and rising costs have made providing potable water and managing other water-related issues increasingly difficult for many communities. This course explores their many water issues and how they adapt their management practices to address constantly evolving water conditions.

  • ( ~ 1 hour ) 

    Air barriers improve the health and comfort of building occupants, improve energy efficiency, and prevent premature degradation of materials, increasing the structure’s life cycle. A successful air and moisture barrier system means under-slab, below-grade, and above-grade systems must work together to provide a continuous barrier. This course looks at above-grade air barrier systems and their types and components. Continuity and compatibility, specification, and installation challenges are also considered.

  • ( ~ 1 hour ) 

    Structural laminated decking allows the beauty of the wood structure to be exposed, creating a unique architectural experience for its occupants. Aesthetics, strength, and durability are combined in one engineered product. Structural laminated wood decking is an environmentally sustainable and cost-effective alternative to solid timber and other roof systems. This course discusses the characteristics of laminated wood decking and reviews recommended design, specification, and installation practices.

  • ( ~ 1 hour ) 

    The materials we use have a significant impact on the environment, our communities, and our health. Consequently, material transparency—wherein manufacturers disclose vital sustainability information about their products—is an increasingly necessary element of modern life. This course examines the tools and resources that are available for both manufacturers and the A&D community that effectively communicate transparency information and optimization of building products. Also reviewed are the benefits of the new-generation insulated metal panels (IMPs) designed to achieve a trusted range of health and wellness certifications.

  • ( ~ 1 hour ) 

    In the fight against climate change, efforts intensify against the planet’s number one enemy—carbon dioxide. The building industry will play a significant role in these efforts. Embodied carbon—the global greenhouse gas emissions generated from sourcing raw material and processing, manufacturing, transporting, and installing building materials—will be the target over the next decade. This course will define embodied carbon, its impact on greenhouse gas emissions, the construction industry's impact, and the methods and tools that building designers can employ to limit embodied carbon.

  • ( ~ 1 hour ) 

    Architectural railing systems offer safety, durability, strength, and design flexibility for a variety of indoor and outdoor applications. This course provides an overview of the important factors that need to be considered when selecting and specifying a railing system for a commercial or residential building project. Topics include materials and finishes, fabrication and installation, and relevant building codes and standards.

  • ( ~ 1 hour ) 

    At their root, metal roofs and walls made from steel, copper, zinc, or aluminum have a lower environmental impact because of their ability to be recycled and reused. This course focuses on the green aspects of standing seam metal roofs, and in particular, their cool roof characteristics. Also addressed are the implications of heat islands, what constitutes construction of cool roofs/walls and how they work, some rules of thumb for understanding cool metal roofing, roof slope impacts on performance, and codes, ratings, and standards that apply to designing cool roofs/walls.

  • ( ~ 1 hour ) 

    Today's complex steel structures present numerous design challenges, including the challenge of fireproofing appropriately in order to ensure the safety and well-being of building occupants as well as protection of the structure itself. This course outlines the code and testing standards that inform fireproofing choices and the various passive fire protection products and methodologies that can address a comprehensive range of design challenges; insight into the proper specification of fire protection products as well as their ability to improve LEED® certification levels is also provided.

  • ( ~ 1 hour ) 

    Extreme weather events of all sorts are becoming increasingly frequent and ferocious. Wood stick-framed structures struggle to withstand them. As climate behavior shifts and worsens, building damage and destruction increase, building codes evolve, and insurance premiums skyrocket or simply become unavailable for certain building types in some locations. Architects must now utilize stronger, more resilient, noncombustible building approaches to address this situation. In addition, mounting pressures related to labor shortages, rising material costs, stringent building codes, and environmental volatility are pushing architects, developers, and engineers to reimagine their approaches to structural design and material selection. This course explores how an innovative, scalable, and economical cold-formed steel column and composite beam framing system can and does address these issues to create faster and deliver stronger, more cost-effective, and sustainable projects. This well-proven, code compliant system reduces dependencies on multiple trades and minimizes the number of handoffs, positively impacting schedule compression, which then translates directly into earlier openings, faster revenue generation, and reduced labor costs. The system is applicable to a range of housing, hotel, and commercial midrise projects in all climates. The course begins by exploring the limitations of traditional wood and metal framing systems. It then describes this prefabricated cold-formed steel (CFS) column and beam framing system and its details, erection methodology, advantages, environmental and sustainability benefits, accreditations, and certifications. It concludes with some representative examples of real-life projects.

  • ( ~ 1 hour ) 

    Lack of secure bicycle parking and storage is one of the top barriers to increased bicycle ridership. However, there is much more to selecting functional and appropriate bike storage than installing a few racks at the building sidewalk. This course examines best practices for bicycle racks and shelters for indoor and outdoor bicycle parking and storage, including typical municipal guidelines and regulations, incentives, guidance on shelters, and rack planning and design.

  • ( ~ 1 hour ) 

    Incorporating nature into the built environment through biophilic design increases occupant well-being, productivity, and health and is an integral component of an ecologically healthy and sustainable community. Presented here is an overview of biophilic design, its relationship to sustainability, and its positive human, environmental, and economic outcomes. Case studies demonstrate how rooftop deck systems can contribute to biophilic and sustainable design objectives.

  • ( ~ 1 hour ) 

    Natural stone pathways offer functional, sustainable solutions that maximize user enjoyment of outdoor spaces without compromising aesthetics. This course reviews pathway material options in terms of durability, appearance, and financial and environmental costs and benefits. The focus is on three natural stone pathway mixes, designed to meet the permeability, erosion resistance, accessibility, traffic level, and installation and maintenance requirements of any project. Also reviewed are how these materials may contribute toward credits in the LEED® v5 Building Design and Construction and Sustainable SITES Initiative® (SITES®) v2 rating systems.

  • ( ~ 1 hour, 15 minutes ) 

    Soft flooring has experienced a surge in popularity in recent years due to its aesthetics, lower costs, durability, and ease of care. This course discusses how to create the optimal soft flooring system through proper substrate and surface preparation.

  • ( ~ 1 hour, 30 minutes ) 

    Permeable interlocking concrete pavement (PICP) has the ability to create solid, strong surfaces for pedestrians and a range of vehicular uses; it can help maintain a site’s existing natural hydrologic function and reduce the overall impact of development. This course discusses the components of a PICP system and how they work together to manage stormwater in a variety of applications. Also addressed are hydrological and structural factors to consider when designing with PICP and how PICP contributes to sustainable building goals and projects.

  • ( ~ 1 hour ) 

    Industrial-strength ladders must provide functional safety for users in varied and demanding building environments. Aluminum ladders are up to the challenge of virtually any application thanks to aluminum’s high strength-to-weight ratio, durability, and corrosion resistance. This course reviews ladder types and safety considerations and discusses how the sustainability benefits of aluminum along with its other attributes make it an ideal material for heavy-duty ladders.

  • ( ~ 1 hour, 30 minutes ) 

    The parking component of a development is typically considered a “necessity,” but have you considered how much the first and last impressions count? This course shows how automated technology turns parking into an all-around winning proposition through increased ROI, unsurpassed safety for drivers and vehicles, sustainable design with a drastically reduced environmental footprint, and a premium valet experience.

  • ( ~ 1 hour ) 

    Concrete products such as precast pieces, pavers, and terrazzo have long provided builders with a flexible range of options for their projects. Beyond their versatility, these concrete products are highly sustainable, thanks to their ability to be recycled, low carbon footprint, and long life span.

  • ( ~ 1 hour ) 

    Now more than ever, public restrooms must provide users with a hygienic and safe experience that supports inclusivity, human health, and wellness. In this course, we explore how multistall public restrooms address users’ concerns about hygiene, safety, privacy, and efficiency through partitions, touchless fixtures, hand dryers, and more. We also discuss fulfilling WELL Building Standard™ v2 requirements by promoting public health and safety in restroom design.

  • ( ~ 1 hour ) 

    Architects and other design professionals have a critical role to play in reducing global greenhouse gas emissions through building design and product selection. The urgent need to reduce both operational and embodied carbon means that building designers must be familiar with transparency documents that facilitate low-carbon product selection. In this course, we review the types of carbon of concern, transparency documents that provide critical information, and tools for sourcing embodied carbon information. We also look at the contribution of insulated metal panels to both low embodied and low operational carbon buildings.

  • ( ~ 1 hour ) 

    Rooftop decks create valuable living and recreational space for building owners, residents, and clients. Accommodating restaurants, hotels, healthcare facilities, and everything from residential to government buildings, rooftop deck systems offer the design flexibility to create versatile, unique outdoor spaces over any structural surface. This course explores the features, surface materials, and design options for rooftop deck systems and provides an overview of recommended planning and installation guidelines.

Displaying 1 - 25 of 400 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST