Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 376 - 400 of 402 results.

FIRST PREV [301-325] [326-350] [351-375] [376-400] [401-402] NEXT LAST

  • ( ~ 1 hour ) 

    Doors installed in high-traffic conditions require special considerations and construction. This course explores the key concepts, best practices, and industry standards for selecting, specifying, installing, and maintaining durable and reliable heavy-usage doors. It details their material and hardware options, construction techniques, maintenance strategies, safety considerations, and required testing protocols. The course concludes with a sample installation.

  • ( ~ 1 hour ) 

    This course examines the design and benefits of pre-engineered trench drains in a sustainable wastewater management system. Discover how they effectively manage water runoff, prevent ponding, and enhance safety in transportation, industrial facilities, and public spaces while supporting sustainable practices. Explore system types, maintenance strategies, and performance optimization, along with guidance on funding and compliance. Gain the knowledge to implement smarter, safer, and more efficient water management solutions in your next project.

  • ( ~ 1 hour, 15 minutes ) 

    One of the most important concepts behind biophilia is the “urge to affiliate with other forms of life” (E.O. Wilson). Humans are connected to nature, inspired by nature, and desire to be harmonized with nature. This course discusses the main principles of biophilic design and explains how a connection with nature benefits human well-being, increases classroom performance, and reduces stress. Multiple case studies demonstrating the positive benefits of daylight and views on building occupants are discussed, and applications of biophilic design are examined.

  • ( ~ 1 hour ) 

    The green building movement has been fueled by a variety of factors, including effects on the environment and human health. This course looks closely at high-pressure laminate (HPL), which covers horizontal and vertical surfaces in many different types of commercial, institutional, and residential buildings. As part of a variety of other products, such as cabinetry, countertops, wall coverings, and furnishings, it can contribute directly to sustainable building design solutions. HPL products can be specified that meet accepted standards for minimizing or reducing environmental and health impacts. All these can be documented to assist in green building certification programs such as LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems, the WELL Building Standard™ version 2 (WELL v2™), and others.

  • ( ~ 1 hour ) 

    This course explores some of the tools at the core of sustainable facility management and how they can enhance indoor environmental quality, reduce environmental impact, and improve occupant well-being. It reviews how operational strategies can support organizational performance and talent attraction and retention in a changing workplace landscape. The course examines emerging trends, new tools and practices, and shifts in certification frameworks such as the LEED® v5 Operations and Maintenance and Building Design and Construction rating systems and the WELL Building Standard™ version 2 that reflect the growing demand for measurable performance and decarbonization efforts.

  • ( ~ 1 hour ) 

    Building a stronger connection with nature is critical to maintaining human health and well-being. Composite wood decking is a durable, environmentally sustainable product that can help build links with nature through outdoor living spaces. This course examines the different decking options and explains the sustainability benefits of using composite decking and how it can help meet green building requirements. Various design innovations that enhance occupant well-being are also discussed.

  • ( ~ 1 hour ) 

    Modern interior spaces often feature open areas and hard surfaces. What should be comfortable rooms in these spaces can become unpleasant from noise and echo or sound reverberation. This course discusses how melamine foam can be used to improve the sound quality in a space. The different options for melamine foam products are discussed along with their installation methods. This course also provides an overview of the sustainability features of sound-absorbing melamine foam.

  • ( ~ 1 hour ) 

    This presentation celebrates the value of incorporating artisanal, handcrafted fixtures and furnishings into a building’s design. Not only are these products unique, functional, and aesthetically appealing, but they can also establish a sense of connection with their maker. Many artisanal, handcrafted products are made using traditional techniques that have been passed down over time, often from generation to generation. And because many of these products are made from sustainable, recycled, or reclaimed materials that are locally available, they can help reduce the environmental impact of a new build. This course illustrates how sourcing artisan-made products for their projects can allow designers and builders to effect social, economic, and environmental change.

  • ( ~ 1 hour ) 

    The enhanced need for water conservation and a decrease of harmful runoff resulting from lawn maintenance has pushed the demand for environmentally-friendly alternatives for landscaping and recreational areas. Explored in this course are the uses, benefits, and specification and installation considerations of artificial turf products that replicate a natural grass look and feel in any environment

  • ( ~ 1 hour ) 

    While natural wood has traditionally been viewed as an ideal material for decking boards and tiles, wood-plastic composite (WPC) has emerged as a durable, easy-to-maintain, and sustainable alternative. This course provides insights into the advantages of composite decking, especially fully capped products, and explores topics including its environmental benefits; contribution to occupant wellness and safety; resistance to fading, staining, and other potential defects that decking experiences; various applications; and attractive aesthetics.

  • ( ~ 1 hour ) 

    Single-skin metal siding can be used for a wide range of projects, from commercial buildings to educational, healthcare, residential, agricultural, and even high-end architectural designs. These siding panels can also contribute to green designs and certification programs. This course explores the different types of single-skin metal siding, specification details, and performance and design considerations.

  • ( ~ 1 hour ) 

    Megatrends are long-term global trends that impact societies in complex ways, including design of the built environment. This course examines seven megatrends and how they may inspire kitchen and bath designers to create accessible, diverse, and sustainable solutions to the social and environmental issues our society faces.

  • ( ~ 1 hour ) 

    Communities need accessible, versatile surfaces for play and relaxation for people of all ages and abilities. Modern landscape synthetic turf options are specifically formulated for public recreation spaces frequented by adults, children, and pets. This course reviews the health benefits of being outdoors, the history and fabrication of synthetic turf, the design considerations for various recreation applications, and synthetic turf’s performance and sustainability characteristics.

  • ( ~ 1 hour ) 

    Protected membrane roof (PMR) assemblies have been widely adopted in low-slope commercial buildings since the late 1960s. Also known as inverted or upside-down roofs, PMR assemblies move the waterproofing membrane from the top of the roof assembly to the surface of the structural deck. This course explores how PMR assemblies provide several advantages over conventional roof assemblies, offering superior protection against water penetration and enhanced energy efficiency. The course also shows how PMR assemblies allow for the creation of green roofs or blue roof systems. With a proven record of reliability, PMR assemblies present a compelling solution for architects seeking innovative, sustainable, and efficient roofing options.

  • ( ~ 1 hour, 15 minutes ) 

    A metal roof combines performance and aesthetics to give commercial and residential buildings strength, longevity, and character. This course examines the features and benefits of standing seam metal roofing and explains the factors to consider when selecting a project-specific metal roofing system.

  • ( ~ 1 hour ) 

    It is an expectation that today’s buildings have to be more than just aesthetically pleasing: they have to provide measurable environmental benefits. This course outlines how insulated concrete forms (ICFs) help meet sustainable design objectives and examines the advantages that ICFs and ICF technology have over conventional construction materials for building envelopes in all building types.

  • ( ~ 1 hour ) 

    The increase in building energy efficiency requirements has led to the use of exterior continuous insulation (CI) to improve the performance of the building envelope. This presentation reviews the benefits of polyiso continuous insulation and then examines in detail the NFPA 285 test standard and fire safety requirements of the 2021 International Building Code for the use of polyisocyanurate insulation in exterior walls of commercial buildings (Construction Types I—IV).

  • ( ~ 1 hour ) 

    Insulated metal panels (IMPs) are known for their superior heat loss control, moisture and air resistance, and striking aesthetic capabilities. This course highlights how these attributes can be integrated to create beautiful, healthy, and safe buildings. It explains how IMPs achieve air, water, vapor, and thermal control via an advanced and cost-effective single-component system that accelerates construction time and offers design flexibility. The course includes essential design details and case studies that showcase the functional and aesthetic capabilities of IMPs. 

  • ( ~ 1 hour, 15 minutes ) 

    Uncorrected thermal bridging can account for 20—70% of heat flow through a building's envelope. Improving details to mitigate both point and linear thermal bridges will significantly improve energy performance. This course reviews types of thermal bridges, examines how they appear in codes and standards, and explores some mitigation concepts and principles. Calculation methods to account for thermal bridging in your projects are introduced, and a sample design project is used to demonstrate code compliance.

  • ( ~ 1 hour ) 

    Synthetic or artificial grass bears virtually no resemblance to its early version produced over fifty years ago. The current product is much more aesthetically pleasing, safer, softer, and durable, made with environmentally friendly materials, highly customizable to suit many indoor and outdoor uses, and recyclable and nonflammable. This course details the many sustainable attributes of this material; its benefits, construction, and certifications; and numerous sample installations.

  • ( ~ 1 hour ) 

    While providing fresh air intake and exhaust, reducing noise, and keeping out unwanted water and debris, louvers can also provide architectural style to a building design. This course discusses the aesthetics, performance, and weather resistance features of a variety of louver designs from the basic to the extreme. A discussion about the industry standards and test protocols for louver performance is included.

  • ( ~ 1 hour, 15 minutes ) 

    Specifying door products that are durable enough to withstand the rigorous demands of high-traffic applications in the healthcare and hospitality industries is crucial to the long-term success of each installation. This course reviews traditional doorway materials and doorway protection options, and provides design solutions that utilize engineered polyethylene terephthalate (PETG) components that extend the life of the door assembly and minimize health and safety issues for the building occupants.

  • ( ~ 1 hour ) 

    Fenestration openings are a critical component of a building envelope, especially in present-day sustainable, energy-efficient buildings. Building envelopes play an important role in controlling the movement of heat, bulk water, and water vapor. Designing fenestration openings for buildings that use continuous exterior insulation has a significant role in reducing thermal bridging and thus conserving energy. This course reviews the impact of exterior insulation on fenestration installation design. The course also explores solutions for a wide variety of wall system variations.

  • ( ~ 1 hour ) 

    Deck railing systems provide the finishing touch to an outdoor area, as well as safety and improved accessibility. Choosing a system that suits a deck project’s needs depends on a variety of factors, including cost, durability, style, customization, maintenance, and eco-friendliness. This course explores the many railing materials that are available, with a focus on aluminum, composite, and aluminum and composite railing systems, whose characteristics are ideal for most projects. 

  • ( ~ 1 hour ) 

    The inherent properties of concrete masonry, including strength, durability, and fire safety, have been well documented, though a perception of high cost persists. Due to significant changes to codes and standards that increased the flexibility of concrete masonry structural design, this construction method may also offer cost-effective and energy-efficient alternative solutions. This course reviews changes to ASTM C90 and the masonry design standard and includes a discussion on the benefits and opportunities these requirements bring.

Displaying 376 - 400 of 402 results.

FIRST PREV [301-325] [326-350] [351-375] [376-400] [401-402] NEXT LAST