Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 376 - 400 of 402 results.

FIRST PREV [301-325] [326-350] [351-375] [376-400] [401-402] NEXT LAST

  • ( ~ 1 hour ) 

    As some of the earliest building materials, masonry and concrete have been used for their durability and strength. However, masonry architecture, both historical and contemporary, has been left vulnerable to water—the single most damaging element to masonry in our environment. This course identifies common water-related problems for masonry and concrete, describes protective treatments that increase masonry durability, and explains the process for safely selecting and applying a protective treatment.

  • ( ~ 1 hour ) 

    The reasons for and benefits of adopting STEP have become increasingly clear as both national and international communities continue in their efforts to transition from dirty fuel sources to renewable ones. This course reviews the various systems and strategies that enable STEP, such as smart grids and microgrids, and explores strategies that STEP enables, such as integrated design processes, efficient water management, and energy innovation.

  • ( ~ 1 hour ) 

    This course provides an overview of types of hybrid vinyl flooring and how they contribute to long-term value through reduced maintenance needs, verified indoor air quality performance, and responsible material sourcing. It examines manufacturing processes, product content, and material transparency that influence consistency, durability, and environmental impact. These attributes can support credit achievement in green building programs such as the LEED® v5 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2 by addressing low-emitting materials, responsible manufacturing, and product transparency.

  • ( ~ 1 hour ) 

    Acrylic solid surface is an attractive design solution, delivering enhanced aesthetics combined with superior performance properties. This course compares the characteristics of 100% acrylic solid surface to other surface materials and reviews the driving factors that contribute to its growing role in sustainable design strategies. Also discussed are the manufacturing, fabricating, and thermoforming processes of acrylic solid surface and the related green standards and certification programs.

  • ( ~ 1 hour ) 

    The beautiful gray patina of zinc architectural metal has graced the rooftops of buildings in Europe for hundreds of years. This course examines the sustainable characteristics of zinc as a roofing material, including its 100% recyclability, zero VOC requirement, and low embodied energy production process. The life cycle analysis of zinc is examined, as is zinc’s long-term service life. Various types of roof and wall applications are also discussed.

  • ( ~ 1 hour ) 

    In this course, we will explore the features and outdoor applications of elevated deck systems that enable architects to optimize outdoor spaces with functionality, sustainability, and aesthetic appeal, creating attractive and safe spaces for occupants. This course covers the system components for practical applications in various settings, offering insights into proprietary pedestal systems.

  • ( ~ 1 hour ) 

    Insulated metal panels (IMPs) are known for their superior heat loss control, moisture and air resistance, and striking aesthetic capabilities. This course highlights how these attributes can be integrated to create beautiful, healthy, and safe buildings. It explains how IMPs achieve air, water, vapor, and thermal control via an advanced and cost-effective single-component system that accelerates construction time and offers design flexibility. The course includes essential design details and case studies that showcase the functional and aesthetic capabilities of IMPs. 

  • ( ~ 1 hour ) 

    This course explores insulating concrete forms (ICFs) as part of a sustainable construction system by covering their benefits, applications, and design considerations. The course delves into the structural properties, energy efficiency, and environmental impact of ICFs. Also presented are best practices for integrating ICFs into various architectural projects and a concise overview of installation steps.

  • ( ~ 1 hour ) 

    The construction industry has experienced a significant increase in moisture-related problems in exterior walls. This presentation explains how a rainscreen wall system prevents moisture accumulation within walls by providing a means for drainage and ventilation, thereby prolonging the life of buildings. Discussion topics include air and moisture movement in the building envelope, building code and water-resistive barriers, and stucco and thin veneers in rainscreen systems.

  • ( ~ 1 hour ) 

    Natural and artificial lighting surrounds us at all times. Light helps us to work safely, enhances design, creates atmosphere, and influences our well-being. This course discusses the circadian rhythm, occupant health, and lighting color temperature, and it examines LED lighting requirements and options for lighting-integrated bathroom mirrors and cabinets.

  • ( ~ 1 hour ) 

    Stormwater management is a critical component in any municipality to retain and infiltrate increased runoff volumes and flow rates from developed land that creates increased impervious cover (roofs and pavements). The course discusses the hydrologic and structural design fundamentals of permeable interlocking concrete pavement (PICP) and why it is an excellent choice to help meet stormwater management goals. Discussions include the benefits of using PICP, components of PICP, design and construction considerations and how use of PICP can help earn LEED® credits.

  • ( ~ 1 hour ) 

    This course explains and illustrates how high-performance, fully composite insulated precast sandwich wall panels can be designed and specified to manage aesthetics, quality, performance, and cost. It explores the pros, cons, and attributes of wythe connectors such as carbon fiber reinforced polymer (CFRP) grid trusses, options for achieving continuous insulation, manufacturing and testing procedures, and strategies for managing costs. It concludes by providing illustrative sample installations to demonstrate the broad range of building types and appearances that can be created with insulated precast enclosures.

  • ( ~ 1 hour ) 

    Direct vent fireplaces are safe and efficient supplemental heat sources in today’s homes. This course reviews the innovative design options for gas fireplaces, including media options, cool wall technology, and safety barriers. Direct and power vent heat delivery systems are discussed, and the impact of standing versus electric pilot lights on energy efficiency is examined.

  • ( ~ 1 hour ) 

    This course examines the design and benefits of pre-engineered trench drains in a sustainable wastewater management system. Discover how they effectively manage water runoff, prevent ponding, and enhance safety in transportation, industrial facilities, and public spaces while supporting sustainable practices. Explore system types, maintenance strategies, and performance optimization, along with guidance on funding and compliance. Gain the knowledge to implement smarter, safer, and more efficient water management solutions in your next project.

  • ( ~ 1 hour ) 

    Learners will receive information about cast stone and how it is made, testing requirements, applications, design recommendations, and how it differs from related materials. Learners will describe appropriate specification, design details of cast stone for architectural applications, and how to determine quality cast stone production.

  • ( ~ 1 hour ) 

    The construction of residential and commercial buildings that use less energy to operate and are long lived is a key part of sustainable design. Insulated concrete forms (ICFs) provide the necessary U-factor, airtightness, resiliency, and durability for all building types. Insulated concrete forms in residential and commercial construction projects offer excellent thermal performance and reduced energy consumption and operating costs, while maintaining a very comfortable and healthy interior environment. This course examines the ICF wall, including materials and components, and discusses design considerations and construction.

  • ( ~ 1 hour ) 

    This course explores how understanding disability can guide the creation of accessible and inclusive spaces. It examines access opportunities in educational and public environments, with an emphasis on strategies that go beyond code compliance. These approaches can help meet credit requirements in the LEED® v5 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2 by improving usability, promoting occupant well-being, and reducing long-term barriers through design solutions.

  • ( ~ 1 hour ) 

    The use of sustainable materials and products during building design will become the standard within the construction industry, and environmental product declarations (EPDs) and Health Product Declarations (HPDs) help architects and owners make informed decisions for their projects. Insulated metal panels— a prime example of a sustainable product—are one of the most cost-effective solutions to reduce energy and greenhouse gases.

  • ( ~ 1 hour ) 

    Material transparency is a growing initiative in the green and healthy building arena. This course reviews legislation that provides the baseline for healthy and sustainable materials and discusses the limitations of those regulations. It also explores the predominant green building programs and how material transparency can help achieve certification. Learners will leave this course with an understanding of how to access, analyze, and apply material transparency to their projects and leverage initiatives to support a healthier, more sustainable building industry.

  • ( ~ 1 hour ) 

    Interest in metal cladding is continually growing because of its sustainable features: durability, long life span, recyclability, and contribution to cool roofs. Manufacturers provide a wide range of panel profiles, materials, and colors to meet the increased demand. This course examines the performance characteristics and attributes of metal roofing and cladding, different aesthetic options, and best installation practices, as well as how they contribute to more energy-efficient buildings.

  • ( ~ 1 hour ) 

    Cooktops are manufactured and classified by construction type and method of heat energy transfer. This course reviews the operation, control, performance, and efficiency of induction cooktops in comparison to their gas and electric counterparts, and shows how induction cooktops can be incorporated into any kitchen design in residential and specialty-commercial applications such as marine, mobile, military, academic, institutional, and hospitality.

  • ( ~ 1 hour ) 

    Thermal modification is a tried and tested process for increasing the durability of wood while maintaining a warm aesthetic in building design. This course examines all aspects of this sustainable wood product and how it can be incorporated into a variety of projects.

  • ( ~ 1 hour ) 

    Modular mechanical support systems are flexible and adaptable frameworks used in mechanical, electrical, and plumbing (MEP) applications. They replace fabricated steel and streamline the installation process. This course presents the history of modularization in construction and the functions, features, benefits, and applications of several modular mechanical support systems, including structural steel framing, adjustable pipe supports, pipe racks, and skid systems.

  • ( ~ 1 hour ) 

    Energy creation, distribution, and consumption are all in a period of transition. Understanding this transition and its various aspects is critical to sustainable transitional energy planning (STEP). This course delves into the reasoning behind the STEP approach and its contributions to creating resilient communities and explores available exhaustible and renewable energy resources and innovations in the energy sector that can be leveraged by STEP.

  • ( ~ 1 hour ) 

    Noise pollution is excessive environmental noise that disrupts the activity or balance of human life. As urban environments have become increasingly dense, the noise problem has magnified, negatively impacting mental and physical health. Sound is everywhere, but it can be controlled with architectural solutions. This course provides a refresher on the basic science of acoustics and how sound interacts with our surroundings. From there, the course explores various architectural solutions, the technology behind them, and how they are successfully integrated into buildings to reduce noise. Discussion of installation applications addresses sound control options for retrofits and new construction.

Displaying 376 - 400 of 402 results.

FIRST PREV [301-325] [326-350] [351-375] [376-400] [401-402] NEXT LAST