Construction Specifications Canada

Construction Specifications Canada strives to educate, connect and lead the design and construction community to achieve excellence in project delivery.

Click to Learn More About Construction Specifications Canada

Visit www.csc-dcc.ca and Join Now!

Displaying 1 - 25 of 630 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Thermal modification is a tried and tested process for increasing the durability of wood while maintaining a warm aesthetic in building design. This course examines all aspects of this sustainable wood product and how it can be incorporated into a variety of projects.

  • ( ~ 1 hour, 15 minutes ) 

    Vacuum insulation panels (VIPs) offer higher thermal resistance per unit thickness than traditional insulation materials. This means a building envelope can meet the effective R-values for enclosures required by the energy codes without having to increase the thickness of the walls, roof, or floors. This course discusses how VIPs work, why they are effective, and the impact the properties of the materials used to construct a VIP can have on its performance. VIP installations and the latest developments in VIP technology are reviewed to illustrate the advantages of using VIPs as thermal insulation in the design of energy-efficient buildings.

  • ( ~ 1 hour ) 

    Made from one of the hardest and most abundant minerals in nature, engineered quartz is a beautiful, durable surface solution for a wide range of commercial and residential applications desiring the beauty of natural stone without its drawbacks. The raw materials of quartz surfacing are harvested from the Earth and formed into slabs via an innovative production process, resulting in a homogenous, nonporous material with superior performance and low maintenance requirements. Reviewed in this course are the features, fabrication guidelines, and design trends of quartz surfacing.

  • ( ~ 1 hour ) 

    Since its introduction in the early 20th century, high-strength fiber cement has proven to be an affordable, sturdy construction material. Technological advances in recent years have increased its versatility in terms of color range and usage for ventilated rainscreen facades. This course examines what high-strength fiber cement is and how it can improve the structural sustainability of buildings and enhance creative freedom in design.

  • ( ~ 1 hour ) 

    Bamboo is a versatile building material that brings warmth and character to indoor applications such as flooring, furniture, and wall and ceiling panels; an innovative process also allows bamboo to be used outdoors in decks, soffits, and siding. This course reviews the material technologies that make bamboo products with reduced environmental impacts and better performance than traditional materials and discusses their potential to meet requirements of the LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    High-performance waterproof panels are engineered to mitigate moisture damage in areas where water is ever present while offering easy installation and lasting beauty. This course reviews the importance of moisture management in wet applications and examines the performance attributes of waterproof panels that make them a complete wall solution.

  • ( ~ 1 hour ) 

    Railings are often one of the most important parts of a deck or stair project because of the safety and security they provide, but they can offer character, style, and beauty as well as functionality. Today's railing systems present many possibilities to create a unique design perfectly suited to the project needs. This course examines high-strength, powder-coated aluminum railings, from code considerations to installation and maintenance. It presents the versatile, mix-and-match capability of finishes, top rail styles, lighting, and infill options that offer long-lasting, easy-to-install solutions for residential and commercial applications.

  • ( ~ 1 hour ) 

    Wood-plastic composite cladding offers a pleasing aesthetic and exceptional durability as part of a rainscreen assembly, enhancing the performance and longevity of the building envelope. Presented here are the functions and components of Lstiburek’s “perfect (universal) wall” design and a drained and ventilated rainscreen assembly. The course explores the composition, manufacture, benefits, design possibilities, and installation of wood-plastic composite cladding, as well as compliance with building codes and standards.

  • ( ~ 1 hour ) 

    When building professionals gather, as they often do these days, to confer under the banner of ESG, the E tends to get the lion's share of the airtime. After all, there is a direct and readily understandable connection between buildings and environmental sustainability, and many of us have devoted significant time and effort to educating ourselves in best practices around this important facet of professional practice. But what about the S? How do those of us engaged in the business of the built environment drive bona fide social impact through the work we do? In fact, there are numerous paths available, and arguably, real social equity is reliant on a foundation of safe and stable housing as much as any other factor. During this webinar, we will explore needs and solutions in the realm of housing affordability and access while specifically touching on both our existing housing stock and impact-focused strategies for bringing new housing online.

  • ( ~ 1 hour ) 

    Architectural finishes mimic the aesthetics and textures of natural materials without the cost, labor, weight, and maintenance challenges of finishes such as wood, stone, leather, and metals. This course discusses their performance characteristics, selection considerations, and proper installation techniques for interior and exterior commercial applications, including fire-rated assemblies and LEED®-certified projects.

  • ( ~ 1 hour ) 

    The inherent properties of concrete masonry, including strength, durability, and fire safety, have been well documented, though a perception of high cost persists. Due to significant changes to codes and standards that increased the flexibility of concrete masonry structural design, this construction method may also offer cost-effective and energy-efficient alternative solutions. This course reviews changes to ASTM C90 and the masonry design standard and includes a discussion on the benefits and opportunities these requirements bring.

  • ( ~ 1 hour ) 

    As the market continues to transform the way sustainable buildings are designed, single-skin metal roof and siding products are at the forefront of contributing to healthier built environments. This course breaks down the material inputs and sustainable attributes of single-skin metal roof and siding panels and includes an overview of how the panels can contribute toward earning several LEED ® for Building Design and Construction credits in v4.1.

  • ( ~ 15 minutes ) 

    Policies targeting the reduction of carbon emissions associated with building products require the disclosure of embodied carbon data to inform those policies and verify whether reduction targets or incentive requirements have been met. This course aims to provide a guide to collecting high-quality embodied carbon data.

  • ( ~ 30 minutes ) 

    As cities continue to grow, incorporating synthetic surfacing into rooftop spaces offers a safe, practical, and innovative solution to creating more livable, attractive, and resilient urban environments. The course explores synthetic rooftop surfacing, including its applications; environmental, health, and safety benefits; and product, manufacturer, and installer certifications. Also discussed is how synthetic turf can contribute to achieving certification in LEED® v4.1 Building Design and Construction, Sustainable SITES Initiative® v2, and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    Extreme weather events of all sorts are becoming increasingly frequent and ferocious. Wood stick-framed structures struggle to withstand them. As climate behavior shifts and worsens, building damage and destruction increase, building codes evolve, and insurance premiums skyrocket or simply become unavailable for certain building types in some locations. Architects must now utilize stronger, more resilient, noncombustible building approaches to address this situation. In addition, mounting pressures related to labor shortages, rising material costs, stringent building codes, and environmental volatility are pushing architects, developers, and engineers to reimagine their approaches to structural design and material selection. This course explores how an innovative, scalable, and economical cold-formed steel column and composite beam framing system can and does address these issues to create faster and deliver stronger, more cost-effective, and sustainable projects. This well-proven, code compliant system reduces dependencies on multiple trades and minimizes the number of handoffs, positively impacting schedule compression, which then translates directly into earlier openings, faster revenue generation, and reduced labor costs. The system is applicable to a range of housing, hotel, and commercial midrise projects in all climates. The course begins by exploring the limitations of traditional wood and metal framing systems. It then describes this prefabricated cold-formed steel (CFS) column and beam framing system and its details, erection methodology, advantages, environmental and sustainability benefits, accreditations, and certifications. It concludes with some representative examples of real-life projects.

  • ( ~ 1 hour ) 

    This course discusses healthcare-associated infections (HAIs) and how the built environment can contribute to restricting their spread. We’ll look at the social and financial impact of HAIs and address factors that contribute to the spread of infection. The course offers solutions on how to design spaces and select products to reduce HAI incidences in healthcare settings, improving patient and employee safety and wellness.

  • ( ~ 1 hour ) 

    Light in the hands of a lighting designer is like a brush in the hands of an artist—it can make or break a show. In this course, we’ll explore the controllable properties of light, the various lighting fixture types and configurations commonly used in a stage setting, and the power and control distribution methods that underpin an effective lighting design. We’ll also review industry standards for low- and medium-voltage control methods, the evolution of related data systems, and the changes it has wrought in the industry.

  • ( ~ 1 hour ) 

    Smart access control and management systems are quickly gaining popularity in multifamily and multitenant properties, and the smart lock market is poised for rapid growth both domestically and internationally. Understanding how smart locks work can be advantageous for architects, specifiers, and construction professionals to help their clients design and develop properties with enhanced security, efficiency, and simplicity in access management. Smart locks are quickly moving beyond mechanical functions to create streamlined, efficient lifestyles. This course discusses the technology, features, and benefits of smart locks while outlining current trends and options.

  • ( ~ 1 hour ) 

    Some building parts may see minimal human contact or weathering. Doors and entryways, however, need to be able to stand up to heavy use, frequent direct contact from building occupants, and environmental impacts. In this regard, FRP doors and frames offer robust strength, reliability, and durability. They provide project versatility and customization in colors and textures, are excellent thermal insulators, and allow for easier installation and lower costs in construction projects. This course outlines the FRP door and frame components, manufacturing methods, and types and discusses the benefits of FRP products.

  • ( ~ 1 hour, 15 minutes ) 

    Today’s louvers not only are functional but also offer enhanced architectural design to the façade of many buildings. More than just a hole in a wall, louvers are responsible for reducing or eliminating water infiltration and offer protection from heavy storms and hurricanes. Different types of louvers and their applications are discussed in this course as well as specific terminology, AMCA/BSRIA testing procedures, and the Certified Ratings Program.

  • ( ~ 1 hour ) 

    As environmental concerns grow, repurposing materials and finding new ways to showcase their unique qualities in design have become increasingly important. This course examines terrazzo’s history, system types, flooring assemblies, and restoration and refinishing options. Discover its enduring versatility and charm through renovation projects featuring newly installed and renewed vintage floors, where its durability, material attributes, and design potential can help meet credit requirements in the LEED ® v5 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building StandardTM version 2.

  • ( ~ 1 hour ) 

    Electric vehicles (EVs) are rapidly becoming ubiquitous. To serve them sufficiently, there must be a massive expansion of car charging options, and that infers that planners and designers must create those options and opportunities now. This course examines the current trends in, and predictions for, EV chargers, the various types and their attributes, where and how they might be installed for maximum effectiveness, and the programs and incentives that apply to both EVs and their charger requirements.

  • ( ~ 1 hour, 30 minutes ) 

    The principles, tools, and techniques for sustainable community planning (SCP) outlined in Part 1 of this course have evolved into various approaches to the actual implementation of SCP around the world. These approaches have been developed in response to local context and in communities ranging in size and form from large cities to small ecovillages and housing clusters. Part 2 of this course describes a number of these approaches for both land and water and also suggests a means of integrating them into a single, comprehensive planning model. The course concludes with case studies of a range of built sustainable community examples and planning exercises and includes some of the lessons learned.

  • ( ~ 1 hour ) 

    Food and wine preservation refers to the process of storing products under ideal conditions in order to maximize longevity. Preserving food and wine maximizes its shelf life and flavor which, in turn, enhances the enjoyment of its consumption. Additionally, proper preservation results in less waste and saves the consumer money. This course reviews the causes of premature food deterioration, the optimal conditions for storing wine and food, and the solutions that are available with a focus on modern refrigeration units.

  • ( ~ 1 hour ) 

    Currently, buildings are the single biggest contributor to GHG emissions, accounting for roughly half of all energy consumption in the U.S. and globally. It is crucial to reduce this level of consumption by including high-performance envelope strategies such as shading systems in all new building designs. In this course, we look at shading systems, examine shading and design strategies, and learn tips for successful selection and design.

Displaying 1 - 25 of 630 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST