Construction Specifications Canada

Construction Specifications Canada strives to educate, connect and lead the design and construction community to achieve excellence in project delivery.

Click to Learn More About Construction Specifications Canada

Visit www.csc-dcc.ca and Join Now!

Displaying 1 - 25 of 601 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    The issue of lead in drinking water is a significant concern that affects many communities. This course explores the harmful effects of lead consumption through drinking water. It addresses fundamental questions about lead’s common sources, how it enters our water supply, and the populations at high risk. Additionally, the course reviews water regulations and strategies for safeguarding against this widespread toxin, emphasizing approaches to reduce lead contamination through the use of filtered water delivery systems.

  • ( ~ 1 hour ) 

    Green building rating system crosswalks are tools that identify where systems are equivalent or aligned, providing a streamlined approach that can help projects achieve dual certifications. This course provides an overview of the crosswalks related to automated window shades and daylight control in LEED® v4.1 Building Design and Construction (BD+C): New Construction and Core and Shell, LEED v4.1 Interior Design and Construction (ID+C): Commercial Interiors, and the WELL Building Standard™ version 2. Also discussed are trade-offs between project parameters and rating system requirements that designers and architects must consider. 

  • ( ~ 1 hour ) 

    Magnesium oxide (MgO) products are panelized construction products that can be used as a direct replacement for other panels, such as gypsum, plywood, and OSB. This course aims to provide insight into MgO products, equipping building professionals with the knowledge and tools to select and specify them correctly, which in turn impacts occupant safety. We will also explore their performance characteristics, features, and purported issues, as well as relevant building code provisions and the evaluation process required for product compliance. Finally, we’ll look at the types of testing data for building materials and the importance of using certified products to ensure occupants’ life safety.

  • ( ~ 1 hour ) 

    Ensure your turf, plants, and trees are getting the appropriate water—in the right quantity, with the proper safety, at the highest efficiency—to reflect your unique landscape environment. This course addresses the most important factors to be considered to achieve optimal performance. At the “root” of an effective irrigation system is proper water volume, pressure, and safety.

  • ( ~ 1 hour, 15 minutes ) 

    The growth of EV (electric vehicle) adoption is accelerating and the behavior of EV drivers is increasing the demand for electric vehicle charging stations. This education course explains the different types of charging available and their suitable applications, and discusses the planning and installation considerations for electric vehicle supply equipment (EVSE).

  • ( ~ 1 hour ) 

    FRP products are not only an ideal alternative to traditional building materials, but in certain applications, they should be the only choice. This course demonstrates the value of FRP‘s core features of corrosion resistance, nonconductivity, and overall lighter weight than steel by up to 70%. The additional primary properties and benefits of FRP are also discussed, showing how FRP can enhance project design, speed up installation, and solve challenges in numerous industries.

  • ( ~ 1 hour ) 

    In today’s building designs, considering the environmental impact of construction projects is of utmost importance. As a result, factors such as durability, installation speed, cost reduction, and long-term value have become crucial aspects of building designs. This course addresses these concerns in the context of nonresidential building renovations, focusing specifically on using state-of-the-art acoustical ceiling coatings as an alternative to removal and replacement with new materials. The course also examines how acoustical ceiling coatings may apply to several credits and features in the LEED® v4.1 Building Design and Construction rating system and the WELL Building Standard™ version 2.

  • ( ~ 1 hour, 15 minutes ) 

    According to building professionals, the solution to achieving an energy-efficient building envelope is to focus more on the roof. Protected membrane roof (PMR) assemblies deliver thermal efficiency and can play a valuable role in a sustainable design strategy. Presented in this course is a review of the components, advantages, ballast options, and design and installation considerations of PMR assemblies.

  • ( ~ 1 hour ) 

    Drying hands thoroughly is crucial for maintaining hygiene levels, and when a hand dryer is too slow, the result is many people give up trying to dry their hands and leave the bathroom with wet or damp hands. Research has shown that damp hands can transmit up to 1,000x more bacteria than dry hands. This course discusses hand-drying concepts and the advantages of hand dryers with air knife technology. It also reviews the impact the choice of hand-drying equipment has on public health, occupant comfort, facility operations, and our environment.

  • ( ~ 1 hour ) 

    Cable railings are a beautifully minimalist way to meet safety requirements without obstructing the view. Learn how to assemble a commercial-grade cable railing with sophisticated fittings engineered to simplify installation, comply with building codes, and reduce overall labor costs.

  • ( ~ 1 hour ) 

    Historically, traditional waterproofing methods involve the placement of a barrier or membrane between the concrete and water. Unlike membranes and other surface systems, crystalline waterproofing is designed to make the concrete itself waterproof. This course discusses how crystalline waterproofing technology provides a high level of performance to concrete structures and what design professionals need to know in order to specify and understand how this chemical technology can improve building projects, cut costs, and help earn LEED® credits.

  • ( ~ 1 hour ) 

    The performance and durability of a roof are critical to the health, welfare, and safety of both building occupants and the building itself. This course examines the construction, materials, and best detailing practices that ensure the proper long-term performance of steep-pitch roofs. It describes and details layout options for assemblies of steep-pitch roofs and the key characteristics of roofing systems that help to prevent roof deterioration and damage. It then highlights best practices in detailing and constructing steep-pitch roof systems that mitigate water, ice, snow, fire, or wind damage to the roof.

  • ( ~ 1 hour ) 

    Trees are essential for the health of the urban environment, mitigating the heat island effect, cleaning the air, reducing stormwater runoff, and improving residents’ health and well-being. But cities are often inhospitable to trees, where their growth may be stunted or their roots may damage surrounding infrastructure. This course explores ways to design successful projects incorporating green infrastructure by understanding the principles behind tree growth, proper type and amount of soil, water management, and the role of soil vault systems in helping urban trees thrive.

  • ( ~ 1 hour ) 

    Just as healthcare providers strive to stop the spread of disease at its source in the body, so too are facilities trying to stop the source of waterborne viruses and bacteria before they get out of control. This course highlights the concerns and consequences of improper water delivery in healthcare facilities and discusses why they are embarking on a systems approach and using a monitoring system to manage water and infection control.

  • ( ~ 1 hour ) 

    Outdoor decks are commonly desired by homeowners and commercial property owners for both new and existing properties. Wood has long been the structural choice for outdoor deck materials. However, wood has disadvantages that can be mitigated with steel deck framing structural construction. In this course, we will discover that light-gauge steel (LGS) is lighter in weight than structural wood, is less susceptible to deterioration due to the elements and pests, requires less maintenance over time, is a sustainable material, and offers unparalleled safety features for dead loads, live loads, and environmental loads such as snow, earthquakes, and wind. Steel deck framing is quick to erect and provides for longer spans than wood of similar cross-sectional size. Structural materials can be easily lifted, and waste is reduced.

  • ( ~ 1 hour, 15 minutes ) 

    One of the most important concepts behind biophilia is the “urge to affiliate with other forms of life” (E.O. Wilson). Humans are connected to nature, inspired by nature, and desire to be harmonized with nature. This course discusses the main principles of biophilic design and explains how a connection with nature benefits human well-being, increases classroom performance, and reduces stress. Multiple case studies demonstrating the positive benefits of daylight and views on building occupants are discussed, and applications of biophilic design are examined.

  • ( ~ 1 hour, 15 minutes ) 

    Concrete is one of the most widely used building materials throughout the world, and as such, it is in everyone’s best interest to consider more sustainable options. This course provides an overview of the properties of slag cement. Discussion topics include benefits, effects on plastics and hardened concrete, environmental profile including life cycle analysis (LCA) and environmental product declarations (EPDs), and various slag cement applications.

  • ( ~ 1 hour ) 

    The green building movement has been fueled by a variety of factors, including effects on the environment and human health. This course looks closely at high-pressure laminate (HPL), which covers horizontal and vertical surfaces in many different types of commercial, institutional, and residential buildings. As part of a variety of other products, such as cabinetry, countertops, wall coverings, and furnishings, it can contribute directly to sustainable building design solutions. HPL products can be specified that meet accepted standards for minimizing or reducing environmental and health impacts. All these can be documented to assist in green building certification programs such as LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems, the WELL Building Standard™ version 2 (WELL v2™), and others.

  • ( ~ 1 hour, 30 minutes ) 

    The principles, tools, and techniques for sustainable community planning (SCP) outlined in Part 1 of this course have evolved into various approaches to the actual implementation of SCP around the world. These approaches have been developed in response to local context and in communities ranging in size and form from large cities to small ecovillages and housing clusters. Part 2 of this course describes a number of these approaches for both land and water and also suggests a means of integrating them into a single, comprehensive planning model. The course concludes with case studies of a range of built sustainable community examples and planning exercises and includes some of the lessons learned.

  • ( ~ 1 hour, 15 minutes ) 

    The use of life safety dampers is driven by requirements in various building codes. There are many different applications for which fire, fire/smoke, smoke, and/or ceiling radiation dampers can be used, each having its own specific purpose and unique installation requirements. This course gives an in-depth look at the different types of dampers and explains how and where they're each used and installed.

  • ( ~ 1 hour ) 

    Industrial-strength ladders must provide functional safety for users in varied and demanding building environments. Aluminum ladders are up to the challenge of virtually any application thanks to aluminum’s high strength-to-weight ratio, durability, and corrosion resistance. This course reviews ladder types and safety considerations and discusses how the sustainability benefits of aluminum along with its other attributes make it an ideal material for heavy-duty ladders.

  • ( ~ 1 hour ) 

    Fire safety and suppression are essential design features for building projects. This course explores how innovative water mist fire suppression systems can enhance occupant safety in homes while preserving aesthetics and minimizing water damage. Key design principles of electronically controlled water mist systems are examined, and their installation and maintenance are described. Also discussed is guidance for dealing with code officials when using these systems as an alternative to traditional fire sprinklers.

  • ( ~ 1 hour ) 

    Material transparency is a growing initiative in the green and healthy building arena. This course reviews legislation that provides the baseline for healthy and sustainable materials and discusses the limitations of those regulations. It also explores the predominant green building programs and how material transparency can help achieve certification. Learners will leave this course with an understanding of how to access, analyze, and apply material transparency to their projects and leverage initiatives to support a healthier, more sustainable building industry.

  • ( ~ 1 hour ) 

    Life-safety systems encompass both passive fire-protection features, like compartmentation and firestopping, and active ones, such as sprinklers and alarms. Portable fire extinguishers are an integral part of life-safety systems and must meet code-mandated number and placement requirements in most building types. This course looks at how fire extinguishers can be stored safely and securely in cabinets and addresses specification considerations. Also reviewed are the many options available to customize fire extinguisher cabinets so they are tailored to each project’s needs and design goals.

  • ( ~ 1 hour, 15 minutes ) 

    Metal roof and wall systems have long been specified for commercial, residential, and industrial buildings because they have a lengthy history of durability, reliability, and resilience. This course examines the attributes of metal panel systems and the design options that make metal-clad buildings sustainable, attractive, and suitable for a variety of applications and environmental conditions.

Displaying 1 - 25 of 601 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST