Category: WOOD, PLASTICS, AND COMPOSITES

Displaying 1 - 25 of 95 results.

FIRST [1-25] [26-50] [51-75] [76-95] NEXT LAST SHOW ALL


  • ( ~ 1 hour ) 

    Biophilic design is a methodology for designing buildings and landscapes that improve human health and well-being while fostering a deeper appreciation for the natural world. This course provides an overview of biophilic design and its frameworks and how it can help projects earn certification through LEED® v4.1 Building Design and Construction (BD+C): New Construction, WELL Building Standard™ version 2, Sustainable SITES Initiative® v2, and the Living Building Challenge (LBC).


  • ( ~ 1 hour ) 

    This course details the benefits and selection process of magnesium oxide (MgO) sheathing in multifamily and commercial construction. MgO sheathing offers structural, fire resistance, and other properties that enable architects and designers to simplify the design and installation of building enclosures. Comparisons of MgO sheathing to traditional sheathing materials such as gypsum are included.


  • ( ~ 1 hour ) 

    The green building movement has been fueled by a variety of factors, including effects on the environment and human health. This course looks closely at high-pressure laminate (HPL), which covers horizontal and vertical surfaces in many different types of commercial, institutional, and residential buildings. As part of a variety of other products, such as cabinetry, countertops, wall coverings, and furnishings, it can contribute directly to sustainable building design solutions. HPL products can be specified that meet accepted standards for minimizing or reducing environmental and health impacts. All these can be documented to assist in green building certification programs such as LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems, the WELL Building Standard™ version 2 (WELL v2™), and others.


  • ( ~ 1 hour, 15 minutes ) 

    As interest in cross-laminated timber (CLT) buildings grows, the market for building enclosure products as a whole has yet to fully provide the water-resistant barriers, vapor retarders, and air barriers to optimally support the unique characteristics of wood. Furthermore, there are few building enclosure design guides specific to detailing wood-framed walls and roofs. This comprehensive course fills the gaps, providing detailed information on mass timber, building enclosure issues, the vapor-permeable technology available to address wood’s unique moisture characteristics, and a how-to guide on detailing the walls and roof of the enclosure.


  • ( ~ 1 hour, 15 minutes ) 

    Secret doors and spaces have been used throughout history to protect valuables, hide people, conceal activities, and provide amusement. This course examines some historic examples before discussing contemporary uses for hidden doors and rooms. Suggested design strategies and hardware specifications are discussed, and safety guidelines, common design mistakes that might expose the existence of a secret door, and some inspirational case studies are reviewed.


  • ( ~ 1 hour ) 

    Building a stronger connection with nature is critical for humans to maintain health and well-being. Composite wood decking is a durable, environmentally sustainable product that can help build links with nature through applications including home outdoor rooms, roof gardens, healing spaces, and public boardwalks in green spaces.


  • ( ~ 1 hour ) 

    Thermoplastic membranes make up a large and growing commercial roofing segment and offer many installation and performance benefits. This course presents the attributes of PVC and TPO roofing membranes and their formulations, installation options, and sustainability benefits. The factors in selecting the type of thermoplastic and the benefits of a single-source system are also discussed.


  • ( ~ 1 hour ) 

    Other coastal softwood species can be used in many of the same applications as western red cedar, including yellow cedar, western hemlock, and Douglas fir. Their performance characteristics vary, giving each species its specific use for structural or appearance applications. This course reviews each softwood species and discusses the importance of sustainably managed forests in curbing climate change.


  • ( ~ 1 hour ) 

    Vertical-lift doors and windows enhance the functionality and convenience of many types of spaces, and when offered with an array of innovative customization options, the result is a unique, aesthetically pleasing opening that can transform any residential or commercial design. This course reviews the types of openings and lifting systems, safety features, and design options. Also addressed are the sustainability benefits that can contribute toward credit fulfillment in the LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems, as well as in the WELL Building Standard™ v2.


  • ( ~ 1 hour ) 

    Deck railing systems provide the finishing touch to an outdoor area, as well as safety and improved accessibility. Choosing a system that suits a deck project’s needs depends on a variety of factors, including cost, durability, style, customization, maintenance, and eco-friendliness. This course explores the many railing materials that are available, with a focus on aluminum, composite, and aluminum and composite railing systems, whose characteristics are ideal for most projects. 


  • ( ~ 1 hour, 15 minutes ) 

    Vacuum insulation panels (VIPs) offer higher thermal resistance per unit thickness than traditional insulation materials. This means a building envelope can meet the effective R-values for enclosures required by the energy codes without having to increase the thickness of the walls, roof, or floors. This course discusses how VIPs work, why they are effective, and the impact the properties of the materials used to construct a VIP can have on its performance. VIP installations and the latest developments in VIP technology are reviewed to illustrate the advantages of using VIPs as thermal insulation in the design of energy-efficient buildings.


  • ( ~ 1 hour ) 

    Through sustainable management, the forests of New England have had a remarkable comeback since the 1830s, with eastern white pine being the most represented softwood in these forests. This light, yet strong wood species has been used for generations and today, meets the requirements of a renewable and sustainable building material. This course reviews eastern white pine’s contribution to sustainability, its grading rules, wood products, and many applications.


  • ( ~ 1 hour ) 

    Mouldings and trim occupy a small amount of space on a home’s exterior; however, their aesthetic value outweighs their size. Cellular PVC mouldings and trim are durable; stain, rot, and insect resistant; maintenance-free; and recyclable. For properly arranged exterior mouldings and trim, architects and designers need a thorough understanding of the materials and the design rules and functions for each location. This course takes the reader through the layout and installation of exterior mouldings, particularly cellular PVC, and looks at some common mistakes and solutions.


  • ( ~ 1 hour ) 

    Leading aluminum extrusion manufacturers have established a variety of methods pertaining to material grade, surface protection, and component solutions to maximize the benefits of aluminum to suit a wide variety of applications. These advancements in technology have led to the development of sustainable wood-patterned aluminum products designed for exterior and interior applications. This course focuses on how these products can be used as a beautiful, high-performance, durable alternative for real wood in a range of applications, including screens, facades, decking, fencing, gates, cladding, and more.


  • ( ~ 1 hour ) 

    High-performance coatings are a necessity when it comes to protecting building exteriors and restoring them after harsh weathering and UV degradation; the right coatings prolong a building exterior’s life span and divert materials from landfills. New PVDF coating systems provide superior protection while satisfying aesthetic and environmental considerations. Their various characteristics and benefits are explored, and application methods are discussed.


  • ( ~ 1 hour ) 

    Redwood offers warmth, character, durability, and strength in products from sustainably managed and harvested forests. This course provides insights into forestry practices and the environmental benefits of redwood lumber, and compares redwood with other common decking materials. Details are presented on how to differentiate and specify grades of redwood; finishing options and methods are also discussed. The course concludes with examples of applications that showcase the unique beauty and attributes of redwood.


  • ( ~ 1 hour ) 

    Redwood Timbers are a safe, strong, and sustainable option for exterior and interior building projects where natural wood is desired. This course provides an overview of the properties of Redwood Timbers including insulation properties, grades, dimensions, fasteners, finishing options, and strength. It concludes with numerous case studies exploring the use of Redwood Timbers for post and beam construction, decorative elements, deck posts, and outdoor living structures.


  • ( ~ 1 hour ) 

    In response to a stronger emphasis on natural resources, building efficiencies, and occupant welfare, manufacturers continue to improve design service offerings, product performance, and installation solutions. Fiberglass fenestration meets these demands for residential and commercial design in the built environment. This course explores the performance attributes of fiberglass fenestration, energy efficiency and structural benefits, testing and verification processes, and contributions to healthy building occupancy.


  • ( ~ 1 hour ) 

    While natural wood has traditionally been viewed as an ideal material for decking boards and tiles, wood-plastic composite (WPC) has emerged as a durable, easy-to-maintain, and sustainable alternative. This course provides insights into the advantages of composite decking, especially fully capped products, and explores topics including its environmental benefits; contribution to occupant wellness and safety; resistance to fading, staining, and other potential defects that decking experiences; various applications; and attractive aesthetics.


  • ( ~ 1 hour ) 

    Today’s building professionals seeking better moisture management and energy efficiency from the exteriors of their projects are turning to rainscreens as a solution to both. Wood-plastic composite (WPC) provides a durable and long-lasting material suitable for use in rainscreen systems, decks, railings, and more. Reviewed in this course are the manufacturing process, performance and green benefits, and installation of WPC cladding that is fully capped with a polymeric plastic “shield,” providing long-term resistance to moisture, staining, and fading.


  • ( ~ 1 hour ) 

    High-performance waterproof panels are engineered to mitigate moisture damage in areas where water is ever present while offering easy installation and lasting beauty. This course reviews the importance of moisture management in wet applications and examines the performance attributes of waterproof panels that make them a complete wall solution.


  • ( ~ 1 hour ) 

    Urbanization and increasing land costs creating a tight housing market are driving densification and multifamily residential development. There is increased interest in midrise timber construction due to the 2021 International Building Code®, which permits mass timber buildings up to 18 stories high. This course discusses current IBC® requirements for the fire design of wood structural elements in Type III and Type IV buildings. Learners will review the use of continuous rod tiedown systems for light wood frame shearwalls and uplift restraint for wood structures up to 6 stories.


  • ( ~ 1 hour ) 

    Building energy code requirements for thermal envelope insulation performance have continued to rise over the years. Selection and proper installation of roofing insulation play a large role in the energy efficiency of commercial buildings. This course reviews types of roofing insulation, their layout and attachment methods, and design considerations to address ponding water and condensation issues. Thermal and fire performance and environmental impacts of rigid roofing insulation types are also compared.


  • ( ~ 30 minutes ) 

    As synthetic turf systems evolve as functional and aesthetic landscape solutions, conversations about sustainability, particularly environmental impacts, are essential. This course addresses the sustainability of synthetic turf from the triple-bottom-line perspective: profit, people, and planet. Also discussed is how synthetic turf can contribute to achieving certification in LEED® v4.1 Building Design and Construction, Sustainable SITES Initiative® v2, and the WELL Building Standard™ version 2.


  • ( ~ 1 hour ) 

    Embodied carbon represents a significant portion of the building industry’s carbon footprint; it is essential to utilize low-carbon construction processes and materials now, before the tipping point of the climate crisis is reached. This course discusses the use of LCAs and EPDs as tools to measure the carbon footprint and environmental impacts of building products and how architects and designers can utilize them to make sustainable choices in the design stages of a project. The course also looks at the growing relevance of EPDs in policies and green building standards, such as the Building Design and Construction rating systems of LEED® v4.1 and the upcoming LEED v5.

Displaying 1 - 25 of 95 results.

FIRST [1-25] [26-50] [51-75] [76-95] NEXT LAST SHOW ALL