Architects Association of Prince Edward Island

The Architects Association of Prince Edward Island (AAPEI) is the self-regulating body formed to administer and regulate the practice of architecture in the province of PEI.

Click to Learn More About the Architects Association of Prince Edward Island

Visit www.aapei.com and Join Now!

Displaying 1 - 25 of 628 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Extreme weather events of all sorts are becoming increasingly frequent and ferocious. Wood stick-framed structures struggle to withstand them. As climate behavior shifts and worsens, building damage and destruction increase, building codes evolve, and insurance premiums skyrocket or simply become unavailable for certain building types in some locations. Architects must now utilize stronger, more resilient, noncombustible building approaches to address this situation. In addition, mounting pressures related to labor shortages, rising material costs, stringent building codes, and environmental volatility are pushing architects, developers, and engineers to reimagine their approaches to structural design and material selection. This course explores how an innovative, scalable, and economical cold-formed steel column and composite beam framing system can and does address these issues to create faster and deliver stronger, more cost-effective, and sustainable projects. This well-proven, code compliant system reduces dependencies on multiple trades and minimizes the number of handoffs, positively impacting schedule compression, which then translates directly into earlier openings, faster revenue generation, and reduced labor costs. The system is applicable to a range of housing, hotel, and commercial midrise projects in all climates. The course begins by exploring the limitations of traditional wood and metal framing systems. It then describes this prefabricated cold-formed steel (CFS) column and beam framing system and its details, erection methodology, advantages, environmental and sustainability benefits, accreditations, and certifications. It concludes with some representative examples of real-life projects.

  • ( ~ 1 hour ) 

    Vinyl membrane decking can prolong the life cycle of various building components; however, performance and durability depend on vinyl membrane selection, specification, and installation. Fortunately, vinyl membrane manufacturers can support architects, contractors, and specifiers through all phases of the project to ensure a successful outcome. This course examines walkable, waterproof roof deck membranes and roofing systems and includes discussions on system characteristics, design considerations, and how to properly specify roof deck membrane systems. 

  • ( ~ 1 hour ) 

    Railing systems perform various functions, meeting safety requirements and serving as a key component of a building’s aesthetic. This course includes a discussion of the strengths and weaknesses of aluminum and structural vinyl railing systems, how they are made, and how they are used in the building industry, including a detailed summary of how they meet various code requirements.

  • ( ~ 1 hour ) 

    Modern security bollards are highly engineered and tested devices that can withstand deliberate ramming by a 15,000 lb vehicle. Bollards are more than decorative boundary markers; they are an essential tool to protect lives and property. This course explains bollard crash testing standards, reviews the pros and cons of available bollard materials, and discusses steel bollard designs for low- and high-impact applications.

  • ( ~ 1 hour ) 

    Originally developed to reduce solar heat gain from entering through a pane of glass, window films in today’s market provide UV protection, reduce glare, reduce fading, increase occupant comfort, offer safety and security, and yield energy savings. This course evaluates the performance of different types of solar control window films and offers daylighting strategies for commercial, retail, and residential building and architectural applications.

  • ( ~ 1 hour ) 

    The surface coating is the first line of defense in prepainted metal, and one of the most important elements to consider as part of a metal purchase. Selecting the right coating, finish, and paint system can affect product lifespan, energy efficiency, and aesthetic appeal. This course discusses the composition of prepainted metal, its application and performance, and examines the building and environmental factors that may influence the type of paint system specified.

  • ( ~ 1 hour ) 

    Biophilic design is a methodology for designing buildings and landscapes that improve human health and well-being while fostering a deeper appreciation for the natural world. This course provides an overview of biophilic design and its frameworks and how it can help projects earn certification through LEED® v4.1 Building Design and Construction (BD+C): New Construction, WELL Building Standard™ version 2, Sustainable SITES Initiative® v2, and the Living Building Challenge (LBC).

  • ( ~ 1 hour ) 

    Solid surface is a popular material choice due to its beauty, durability, and ease of cleaning. Selecting a solid surface depends on the manufacturing process, the raw materials involved, and the material’s sustainability. This course examines solid surface as a decorative material, discusses its characteristics and attributes, and compares it with other hard surface materials

  • ( ~ 1 hour, 15 minutes ) 

    The diffuse light-transmitting and composite technology of translucent structural sandwich panels has increasingly caught the imagination of architects and designers because it is possible to maximize wall or roof daylighting while minimizing energy loss, with consequent savings in the running costs of heating, air conditioning, and artificial lighting. This course explores the fundamental connection between light and health by examining how translucent structural sandwich panels deliver glare-free, diffuse daylight deeper and more evenly into spaces with maximum thermal efficiency.

  • ( ~ 1 hour ) 

    Through sustainable management, the forests of New England have had a remarkable comeback since the 1830s, with eastern white pine being the most represented softwood in these forests. This light, yet strong wood species has been used for generations and today, meets the requirements of a renewable and sustainable building material. This course reviews eastern white pine’s contribution to sustainability, its grading rules, wood products, and many applications.

  • ( ~ 1 hour ) 

    Green facades can contribute to building energy efficiency, durability, aesthetic value, sustainability, and cost effectiveness in the performance of ecological system services. This course examines the considerations required for successful green facade installations and includes discussions on system selection, design, plant selection, maintenance, and client/owner education.

  • ( ~ 1 hour ) 

    Stormwater management is a critical component in any municipality to retain and infiltrate increased runoff volumes and flow rates from developed land that creates increased impervious cover (roofs and pavements). The course discusses the hydrologic and structural design fundamentals of permeable interlocking concrete pavement (PICP) and why it is an excellent choice to help meet stormwater management goals. Discussions include the benefits of using PICP, components of PICP, design and construction considerations and how use of PICP can help earn LEED® credits.

  • ( ~ 1 hour ) 

    In applications where wood may be exposed to moisture, insects, or fungal organisms, preservative-treated wood can ensure a project’s durability. This course reviews: the manufacturing process for pressure-treated wood; types of preservative treatments and the required levels of retention as dictated by the end-use application, desired service life, and exposure conditions; American Wood Protection Association (AWPA) Use Category standards; current issues concerning preserved wood in residential and commercial construction; and Best Management Practices (BMPs) for aquatic uses.

  • ( ~ 1 hour ) 

    Elevators are integral to accessible, smooth, and efficient operations in many applications. For low-rise buildings, hydraulic elevators or gearless machine room-less (MRL) elevators are most common; this course compares the two in terms of sustainability and cost. Also presented are the history of the elevator, types of elevators suitable for installation in a range of buildings, the distinctions between proprietary and nonproprietary elevator systems, and recommendations on how to specify a nonproprietary system to maximize its long-term benefits.

  • ( ~ 1 hour ) 

    Beyond aesthetics, ventilated façades and cladding systems provide added wind load absorption, moisture protection, and insulation properties, resulting in prolonged building durability and sustainability. This course examines how these systems benefit occupant well-being by mitigating exterior noise transmission, offer significant building operating energy savings from decreased HVAC demands, and increase occupant comfort by regulating interior temperatures. Mechanical and chemical adhesive attachment is also examined, focusing on the adhesive’s ability to absorb wind-induced vibration as well as expansion and contraction from temperature and humidity changes. Several case studies are also discussed.

  • ( ~ 1 hour ) 

    When deciding on outdoor cabinetry, understanding the available material options is essential to the selection of a long-lasting, sustainable choice. This course reviews the pros and cons of these options, with a focus on the attributes, sustainability, and performance characteristics of marine-grade high-density polyethylene (HDPE) material, engineered to withstand extreme conditions while maintaining optimal structural integrity.

  • ( ~ 1 hour, 15 minutes ) 

    In the 1920s, aluminum turned the world of metals upside down with its benefits of light weight, strength, fabrication flexibility, and durability. Since then, finishing technology has provided a steady stream of protection and coloring improvements. This course explores the sustainability of aluminum, the anodizing process, and the performance characteristics of architectural anodized aluminum. It includes information to assist in the selection and specification of architectural anodized finishes for aluminum sheet, extrusions, and panels.

  • ( ~ 1 hour, 15 minutes ) 

    Contemporary drinking fountains, water coolers, and water bottle refilling stations provide communities with access to safe, clean drinking water. This course recounts the history of the drinking fountain and addresses regulations surrounding drinking water distribution and treatment. It introduces touchless activation, compares the use of bottled water to bottle refillers, and provides guidelines for specifying commercial water delivery systems.

  • ( ~ 1 hour ) 

    It’s imperative to have a dependable, well-designed fire protection system that helps save lives and property. This course is designed to advance awareness and understanding about the wide range of components, functionality, and benefits of today’s most innovative standpipe fire systems and how to select the optimal system for your design based on building type, codes, and other requirements.

  • ( ~ 1 hour ) 

    Light-manipulating glass products transport, redirect, refract, and reflect light to create architectural spaces that engage occupants with the unexpected interplay of light and shadow. This course explores these durable, functional products and their many options for customization. Also reviewed is how glass panels may apply to several credits and features in the LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    Buildings, roads, and man-made landscapes can harm the natural environment with their effect on the natural water cycle. Architects and designers need to be aware of the best practices and experts’ recommendations to specify the correct type of drainage system that serves users and protects the environment. This course discusses the positive contributions of modern drainage systems to the built environment and their role in improving sustainability. The technical and aesthetic aspects of trench drain design are also covered.

  • ( ~ 1 hour, 15 minutes ) 

    One of the most important concepts behind biophilia is the “urge to affiliate with other forms of life” (E.O. Wilson). Humans are connected to nature, inspired by nature, and desire to be harmonized with nature. This course discusses the main principles of biophilic design and explains how a connection with nature benefits human well-being, increases classroom performance, and reduces stress. Multiple case studies demonstrating the positive benefits of daylight and views on building occupants are discussed, and applications of biophilic design are examined.

  • ( ~ 1 hour, 30 minutes ) 

    Continuous insulation is part of building standards and state and energy codes due to its ability to reduce thermal bridging and the associated heat loss and energy consumption. This course looks at the use of polyisocyanurate as a continuous insulation in Type V and residential construction and its use as a multifunctional envelope component—air barrier, weather-resistive barrier, and vapor retarder—by reviewing code requirements for the building envelope.

  • ( ~ 1 hour ) 

    Redwood Timbers are a safe, strong, and sustainable option for exterior and interior building projects where natural wood is desired. This course provides an overview of the properties of Redwood Timbers including insulation properties, grades, dimensions, fasteners, finishing options, and strength. It concludes with numerous case studies exploring the use of Redwood Timbers for post and beam construction, decorative elements, deck posts, and outdoor living structures.

  • ( ~ 1 hour ) 

    Roughly 10 million tons of office furniture, furnishings, and equipment (FFE) end up in landfills annually in the US and Canada. Sustainable decommissioning is an innovative solution that ensures that the environmental, social, and governance (ESG) value of workplace change is measured, maximized, and reported. This course reviews sustainable decommissioning, a proven strategy for reducing carbon, building community, and embracing circularity in corporate builds, moves, renovations, and refreshes. Also discussed is the role of sustainable decommissioning in meeting requirements in LEED® v4.1 Building Design and Construction (BD+C): New Construction and LEED v4.1 Operations and Maintenance (O+M): Existing Buildings.

Displaying 1 - 25 of 628 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST