Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 1 - 25 of 401 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour, 15 minutes ) 

    Energy codes at the federal, state, and local levels increasingly focus on reducing energy consumption, saving consumers money, and reducing CO2 emissions. Whether new or recently updated, energy codes play an essential role in the buildings we design, build, and ultimately live, work, and play in. This course examines the lighting requirements and provisions of ASHRAE Standard 90.1-2019 and the 2021 International Energy Conservation Code ® , with a focus on plug and lighting control strategies for energy efficiency.

  • ( ~ 1 hour ) 

    Designers increasingly focus on creating environments that improve the health, welfare, and productivity of occupants. This includes providing the benefits of daylight, fresh air, and access to the outdoors. This course explores how retractable roofs can extend the use of outdoor spaces year-round by converting them to daylit indoor spaces seasonally or with sudden weather changes. It explains the economic benefits, structure, and operation of various retractable roof types and how they can be customized to suit multiple site sizes and types, including rooftops. The course concludes with a series of case studies.

  • ( ~ 1 hour ) 

    This course provides an overview of types of hybrid vinyl flooring and how they contribute to long-term value through reduced maintenance needs, verified indoor air quality performance, and responsible material sourcing. It examines manufacturing processes, product content, and material transparency that influence consistency, durability, and environmental impact. These attributes can support credit achievement in green building programs such as the LEED® v5 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2 by addressing low-emitting materials, responsible manufacturing, and product transparency.

  • ( ~ 1 hour ) 

    Now more than ever, public restrooms must provide users with a hygienic and safe experience that supports inclusivity, human health, and wellness. In this course, we explore how multistall public restrooms address users’ concerns about hygiene, safety, privacy, and efficiency through partitions, touchless fixtures, hand dryers, and more. We also discuss fulfilling WELL Building Standard™ v2 requirements by promoting public health and safety in restroom design.

  • ( ~ 1 hour ) 

    Retrofitting and replacing roof systems are essential aspects of the construction industry and offer opportunities to reduce a building’s energy consumption. Sustainable retrofitting of roofs with durable, energy-efficient materials helps reduce waste and conserve resources while promoting ecofriendly building practices. This course gives an overview of expanded polystyrene (EPS) insulation and innovative roof systems that are designed to enhance building efficiency.

  • ( ~ 1 hour ) 

    Accommodating an aging population in multistory homes means finding ways to simplify access to all levels. As residential elevators continue to decrease in cost, they are being considered as the most effective solution to offer safety, comfort, and convenience to the homeowner. This course reviews all considerations needed for the installation of a residential elevator including preplanning, locating, power and structural requirements, and code considerations.

  • ( ~ 1 hour ) 

    As the market continues to transform the way sustainable buildings are designed, single-skin metal roof and siding products are at the forefront of contributing to healthier built environments. This course breaks down the material inputs and sustainable attributes of single-skin metal roof and siding panels and includes an overview of how the panels can contribute toward earning several LEED ® for Building Design and Construction credits in v4.1.

  • ( ~ 1 hour ) 

    The growing global population is creating an increased demand for resources. As a result, there is a need to replace fossil-based, nonrenewable building materials with more bio-based materials, such as bamboo. This course describes the properties of bamboo that make it a more sustainable choice, including its fast growth and CO2 saving and storing potential. It also discusses how active bamboo reforestation and the use of durable bamboo products can lead to CO2 reduction across many industries.

  • ( ~ 1 hour ) 

    The acoustical comfort level in the workplace is a key measure of the quality of the indoor environment for building occupants. This course explores key concepts and characteristics of sound, as well as speech intelligibility and privacy and their associated acoustical remedies. Also presented is the use of sound absorbers and diffusers as acoustical solutions to noise problems.

  • ( ~ 1 hour ) 

    High-performance, fully composite insulated wall panels deliver all the benefits of factory precasting with load-bearing and energy efficiency performance from the lightest, thinnest panels possible. This course describes the makeup and cost efficiencies of composite precast panels, their benefits when made with carbon fiber grid shear trusses, and considerations for selecting among the insulation options. The majority of the course focuses on case studies of successful precast enclosure projects in a wide variety of building types across a range of markets.

  • ( ~ 1 hour ) 

    High-performance waterproof panels are engineered to mitigate moisture damage in areas where water is ever present while offering easy installation and lasting beauty. This course reviews the importance of moisture management in wet applications and examines the performance attributes of waterproof panels that make them a complete wall solution.

  • ( ~ 1 hour, 15 minutes ) 

    Stone has long been valued for its durability, reliability, and beauty. Today, natural thin stone veneer offers these benefits with reduced weight, cost, and environmental impact. This course explores its applications in commercial and residential settings, covering aesthetics, performance, and key specification standards. It also examines the sustainability profile of thin stone veneer compared to full natural and manufactured stone, highlighting an industry-wide LCA, responsible quarrying and processing, and how collaboration with fabricators can reduce environmental impact while preserving quality and design integrity.

  • ( ~ 1 hour ) 

    This course explores some of the tools at the core of sustainable facility management and how they can enhance indoor environmental quality, reduce environmental impact, and improve occupant well-being. It reviews how operational strategies can support organizational performance and talent attraction and retention in a changing workplace landscape. The course examines emerging trends, new tools and practices, and shifts in certification frameworks such as the LEED® v5 Operations and Maintenance and Building Design and Construction rating systems and the WELL Building Standard™ version 2 that reflect the growing demand for measurable performance and decarbonization efforts.

  • ( ~ 1 hour ) 

    Keeping bathrooms and kitchens clean and hygienic is essential to health and well-being but can be challenging in busy family homes. This course introduces some basic principles of home hygiene, provides an overview of the most effective cleaning strategies, and shows how contemporary kitchen and bathroom technology and design innovations can make hygienic cleaning substantially easier. Technologies discussed include touchless activation, intelligent toilets, bidet seats, and antimicrobial surfaces.

  • ( ~ 1 hour ) 

    It is an expectation that today’s buildings have to be more than just aesthetically pleasing: they have to provide measurable environmental benefits. This course outlines how insulated concrete forms (ICFs) help meet sustainable design objectives and examines the advantages that ICFs and ICF technology have over conventional construction materials for building envelopes in all building types.

  • ( ~ 1 hour ) 

    Waterproof, fireproof, nonporous, and eco-friendly natural slate has great value as a building material, particularly given its ability to protect structures for generations. This course reviews the characteristics and properties of slate, presents some of the many design options, and provides guidance on sourcing and specification. The sustainability benefits of roofing slate are also discussed, from its extraction and low-impact processing to its strength and enduring properties in all weather conditions.

  • ( ~ 1 hour ) 

    Often the largest access point in a building, sectional door systems play a significant role in controlling energy costs and supporting sustainable design in residential and commercial buildings. This course explores the specification considerations and the different types of sectional garage doors, as well as their role in enhancing the thermal performance of homes and commercial buildings.

  • ( ~ 1 hour ) 

    Biophilic design is a methodology for designing buildings and landscapes that improve human health and well-being while fostering a deeper appreciation for the natural world. This course provides an overview of biophilic design and its frameworks and how it can help projects earn certification through LEED® v4.1 Building Design and Construction (BD+C): New Construction, WELL Building Standard™ version 2, Sustainable SITES Initiative® v2, and the Living Building Challenge (LBC).

  • ( ~ 1 hour ) 

    Modular wall systems provide a versatile and customizable approach to biophilic design, seamlessly integrating with existing infrastructure and adapting to evolving requirements. This course delves into their benefits, features, specification and installation considerations, and applications encompassing various environments, from urban streetscapes and public parks to commercial spaces, rooftops, and residential areas.

  • ( ~ 1 hour, 15 minutes ) 

    Vacuum insulation panels (VIPs) offer higher thermal resistance per unit thickness than traditional insulation materials. This means a building envelope can meet the effective R-values for enclosures required by the energy codes without having to increase the thickness of the walls, roof, or floors. This course discusses how VIPs work, why they are effective, and the impact the properties of the materials used to construct a VIP can have on its performance. VIP installations and the latest developments in VIP technology are reviewed to illustrate the advantages of using VIPs as thermal insulation in the design of energy-efficient buildings.

  • ( ~ 1 hour, 15 minutes ) 

    Selecting flooring is an important decision, but equal emphasis should be placed on proper surface preparation to avoid costly flooring failures. This course reviews best practices for a typical hardwood flooring installation and discusses the innovative options that consolidate products and steps, saving time and money while enhancing certain performance characteristics.

  • ( ~ 1 hour, 15 minutes ) 

    Concrete masonry units (CMUs) are made from dry-cast concrete, which uses less cement and sequesters carbon at a faster and greater rate than wet-cast concrete. This course begins with an overview of concrete products and the differences between dry- and wet-cast concrete, then explores the relationship between concrete and the carbon cycle, recent research into CMU sequestration rates, and the results of mini life-cycle assessments comparing different wall systems. Finally, some practical strategies for further reducing embodied carbon are reviewed.

  • ( ~ 1 hour ) 

    Multiwall polycarbonate is an extremely versatile glazing material with high impact strength, excellent thermal insulation, and long-term light transmission. Compared to glass, it is much lighter and easier to handle, offering considerable savings in transportation, labor, and building costs. This course examines how multiwall polycarbonate systems can improve thermal energy efficiency and increase daylighting within a space, enhancing occupant productivity, health, and well-being.

  • ( ~ 1 hour, 15 minutes ) 

    One of the most important concepts behind biophilia is the “urge to affiliate with other forms of life” (E.O. Wilson). Humans are connected to nature, inspired by nature, and desire to be harmonized with nature. This course discusses the main principles of biophilic design and explains how a connection with nature benefits human well-being, increases classroom performance, and reduces stress. Multiple case studies demonstrating the positive benefits of daylight and views on building occupants are discussed, and applications of biophilic design are examined.

  • ( ~ 1 hour ) 

    Door systems are an integral part of educational facilities. This course discusses their importance in creating a safe and secure learning environment and explores the different types of doors, frames, and hardware components. Also covered are industry standards, compliance requirements for fire and life safety, accessibility, and security measures that enhance the safety of the door assembly. The course concludes with some practical applications and case studies in educational settings.

Displaying 1 - 25 of 401 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST