Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 1 - 25 of 403 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    The demand for mass timber construction has increased significantly in recent years due to its numerous benefits, including sustainability, strength, faster construction times, cost savings, and a natural wood aesthetic. However, a major drawback of mass timber construction is its poor acoustical performance. This course examines the various mass timber construction types and provides acoustical solutions to meet and surpass building codes.

  • ( ~ 1 hour ) 

    Urban warming negatively impacts human health and quality of life, energy use, air quality, social equity, and economic prosperity. This course describes how solar reflective cool roof and wall materials help protect individuals and communities from the impacts of extreme heat and discusses the factors that influence energy savings and performance. The course also notes various climate resilience initiatives, green building programs, and energy codes that require or promote the use of cool roofs or walls and concludes by explaining the important role of third-party product ratings and the educational resources available online.

  • ( ~ 1 hour ) 

    The intent of the Americans with Disabilities Act (ADA) is to ensure that individuals with disabilities have the same rights and opportunities as everyone else and are afforded equal access to the built environment. This course discusses the need for compliance with accessibility regulations and how businesses can benefit from it. It explores the ADA, criteria for perimeter and interior access, accessible design requirements for door and doorway components, and relevant codes, standards, and design guidelines.

  • ( ~ 1 hour, 15 minutes ) 

    This course explores a 5,000-square-foot office expansion recently completed by Excel Dryer. The building owner was committed to reducing their environmental impact and building a beautiful, healthy, sustainable, and functional space. This course discusses the relevant tools for sustainable, healthy buildings, including the WELL Building Standard™ version 2 and the LEED® v4.1 Building Design and Construction rating system. The methods for achieving these goals are examined through various building products and systems: walls, furniture, HVAC, sound masking and acoustic systems, flooring, daylighting and solar shading, and plumbing.

  • ( ~ 1 hour ) 

    As more companies invest in solar to generate clean power for their operations, meet environmental goals, or save money on electrical bills, architects and building owners may need to be prepared to accommodate rooftop photovoltaic (PV) systems in both existing and new buildings. This course provides an introduction to rooftop PV systems, including a discussion of modules, components, and attachments, and best practices for a durable roof and PV system.

  • ( ~ 1 hour ) 

    Interest in metal cladding is continually growing because of its sustainable features: durability, long life span, recyclability, and contribution to cool roofs. Manufacturers provide a wide range of panel profiles, materials, and colors to meet the increased demand. This course examines the performance characteristics and attributes of metal roofing and cladding, different aesthetic options, and best installation practices, as well as how they contribute to more energy-efficient buildings.

  • ( ~ 1 hour, 15 minutes ) 

    Growing US cities face escalating housing costs, residential and commercial displacement, homelessness, and the suburbanization of poverty. As increasing numbers of households are pushed out of the city by rising housing costs, they are burdened with long commutes and increased transportation costs while their carbon emissions escalate. These challenges are exacerbated by a deeply embedded policy—single-family zoning—that accounts for 75% or more of the land area allotted for housing in many fast-growing US cities. Part 2 of this two-part series outlines policies implemented at the city and state levels to make existing single-family neighborhoods more inclusive, equitable, walkable, and sustainable. It illustrates innovative case studies at the building scale to increase access to these neighborhoods for both renters and homeowners. In addition, it reviews efforts by architects and AIA chapters to address this issue despite the controversy that surrounds it. Each part of Right to the City can be taken as an individual course. Want free access to this and other NCARB courses? The NCARB Continuum Education Program offers free HSW CE courses to licensure candidates and architects who hold a current NCARB Certificate, which can be accessed through their NCARB record. Renew your NCARB Certificate , or get NCARB Certified .

     In order to download this course, a USD $25.00 fee must be paid.

  • ( ~ 1 hour ) 

    Building owners value daylighting and views but face security and safety challenges with large amounts of glazing. Thermoplastic sheet products offer a variety of glazing solutions that resist security threats while providing transparency, strength, and durability. This course introduces the grades and characteristics of acrylic and polycarbonate sheet products and discusses how they meet the requirements for protection against forced entry and ballistics.

  • ( ~ 1 hour ) 

    Standing seam metal roofing has been used successfully in the United States for centuries, and proper specification is key to realizing its intended performance. Examined here are: the factors driving the demand for standing seam metal roof and wall systems; standing seam panel basics; gauge and grade; oil canning; specification considerations; testing standards; and forming, delivery, storage, handling and warranty.

  • ( ~ 1 hour ) 

    Noise negatively impacts human health, making sound control crucial in multifamily housing and various commercial applications. This course reviews airborne and impact sound, the key elements of soundproofing, and the role of high-performance wood fiber soundproofing products in providing effective noise control. Additionally, it discusses how these solutions contribute to meeting requirements of the LEED® v5 Building Design and Construction (BD+C) and Interior Design and Construction (ID+C) rating systems and the WELL Building Standard version 2.

  • ( ~ 1 hour, 30 minutes ) 

    Masonry is an ideal sustainable building construction material as it is extremely durable, recyclable, and reusable. It allows for extraordinary design versatility, so it can meet both aesthetic and functional requirements. This course looks at the design elements, components, and construction techniques that characterize sustainable masonry cavity wall building envelopes.

  • ( ~ 1 hour ) 

    This course provides an overview of types of hybrid vinyl flooring and how they contribute to long-term value through reduced maintenance needs, verified indoor air quality performance, and responsible material sourcing. It examines manufacturing processes, product content, and material transparency that influence consistency, durability, and environmental impact. These attributes can support credit achievement in green building programs such as the LEED® v5 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2 by addressing low-emitting materials, responsible manufacturing, and product transparency.

  • ( ~ 1 hour ) 

    Birds are an important part of ecosystems, performing many essential ecological functions. Unfortunately, millions of birds are killed every year due to collisions. This course discusses how architects can include bird-safe glass design strategies in their projects to significantly reduce the number of bird collisions and positively impact the environment and biodiversity. It also examines how bird-safe glass may help projects satisfy credit requirements in the LEED® v5 Building Design and Construction rating system.

  • ( ~ 1 hour ) 

    The look of wood adds warmth and aesthetic appeal to building designs that other materials, such as masonry, metals, and glass, cannot replicate. However, since natural wood may not be suitable for Class 1—3 commercial projects, innovative composite and synthetic materials have been developed to overcome the limitations of real wood. This course provides a comprehensive examination of eight wood-inspired design technologies that mimic the appearance of natural wood while meeting fire performance standards. The role of wood-plastic composite (WPC) hybrid products in fulfilling the requirements of the LEED® v5 Building Design and Construction (BD+C) rating system is also reviewed.

  • ( ~ 1 hour, 15 minutes ) 

    Vacuum insulation panels (VIPs) offer higher thermal resistance per unit thickness than traditional insulation materials. This means a building envelope can meet the effective R-values for enclosures required by the energy codes without having to increase the thickness of the walls, roof, or floors. This course discusses how VIPs work, why they are effective, and the impact the properties of the materials used to construct a VIP can have on its performance. VIP installations and the latest developments in VIP technology are reviewed to illustrate the advantages of using VIPs as thermal insulation in the design of energy-efficient buildings.

  • ( ~ 1 hour ) 

    Bamboo is a versatile, strong material with a warm aesthetic that suits an array of interior design styles. This course looks at how bamboo is sustainably sourced to produce low-VOC products such as flooring, cladding, and three-ply architectural wall and ceiling panels. Project examples highlight a CNC routing method that produces panels with eye-catching patterns of varying depths and levels of intricacy. The course also examines how bamboo products may apply to several credits and features in the LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    Thermally controlled environments such as cold storage freezers and coolers, and food processing and packaging facilities take many different forms. Their performance and functionality depend on their project-specific requirements and can be affected by the conditions the materials and systems are subjected to. This course discusses how insulated metal panels (IMPs) perform the necessary functions to provide an effective energy-efficient building envelope and why they are suitable for use within temperature-controlled hygienic environments—where performance is critical.

  • ( ~ 1 hour ) 

    Building systems can be enhanced by incorporating reflective insulation or radiant barriers into the building envelope. With effective insulation, heat transfer is reduced, resulting in less summer heat gain, and less winter heat loss. This course explains common and effective uses for reflective insulation and radiant barriers in a wide range of construction and building applications and demonstrates how these systems reduce energy usage, increase the lifespan of the mechanical equipment for heating and cooling, and reduce maintenance requirements and frequency of replacement.

  • ( ~ 1 hour ) 

    Fenestration openings are a critical component of a building envelope, especially in present-day sustainable, energy-efficient buildings. Building envelopes play an important role in controlling the movement of heat, bulk water, and water vapor. Designing fenestration openings for buildings that use continuous exterior insulation has a significant role in reducing thermal bridging and thus conserving energy. This course reviews the impact of exterior insulation on fenestration installation design. The course also explores solutions for a wide variety of wall system variations.

  • ( ~ 1 hour ) 

    Now more than ever, the environmental impacts of products used in construction are a worldwide concern and one that the architecture and design (A&D) community is being asked to address in their work. Environmental product declarations (EPDs) are powerful tools when choosing materials for commercial projects. This course discusses how, where, and why to use EPDs to inform sustainable product selection and specification decisions and how EPDs are incorporated into key green building rating systems and codes, including LEED® v4.1 Building Design and Construction (BD+C) and Interior Design and Construction (ID+C), Green Globes® for New Construction (NC), and the International Green Construction Code® (IgCC®).

  • ( ~ 1 hour ) 

    Deck railing systems provide the finishing touch to an outdoor area, as well as safety and improved accessibility. Choosing a system that suits a deck project’s needs depends on a variety of factors, including cost, durability, style, customization, maintenance, and eco-friendliness. This course explores the many railing materials that are available, with a focus on aluminum, composite, and aluminum and composite railing systems, whose characteristics are ideal for most projects. 

  • ( ~ 1 hour, 15 minutes ) 

    Building owners have come to rely on weatherable coatings to provide long-term protection to their buildings. With an increased focus on sustainability, performance, and durability, PVDF resin-based coatings can help architects and painting contractors exceed their clients’ design goals. This course covers the key components and functions of high-performance weatherable coatings and looks at how these coatings contribute to sustainable design.

  • ( ~ 1 hour ) 

    Exterior wall systems are the dividing line between the exterior and the interior and must address several fundamental performance goals of the building envelope. This course reviews traditional rainscreen design and examines why, with its single-component construction, an insulated composite backup wall system is a vast improvement over traditional multicomponent building technology.

  • ( ~ 1 hour ) 

    Building science experts acknowledge the need for drainage in both vertical and horizontal applications in order to eliminate moisture issues and extend the life of the building. This course examines foundation wall, green roof, and plaza deck applications and discusses the factors that impact drainage, including soil permeability, saturation, land cover, and loading. Flow rate standards are discussed, and drainage composite mat installation is explained.

  • ( ~ 1 hour ) 

    Throughout history, concrete mixes and carved natural stone have combined to create substance, beauty, and longevity in our architecture. Glass fiber reinforced concrete (GFRC) was created to ensure that the attributes of concrete and stone continue to be enjoyed but with efficiency in the application that is expected in today's world of design. This course covers the creation of GFRC, its components, fabrication, applications, and design capabilities. It compares GFRC to other types of architectural concrete and presents GFRC performance and sustainable design advantages.

Displaying 1 - 25 of 403 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST