American Institute of Constructors

Since 1971, the The American Institute of Constructors (AIC) has promoted individual professionalism and excellence throughout the related fields of construction. AIC members are individuals who serve the construction industry through professionalism and a commitment to high ethical standards.

Click to Learn More About the American Institute of Constructors

Visit www.aic-builds.org and Join Now!

Displaying 1 - 25 of 627 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Designing beautiful, sustainable, high-performance buildings can help your structures leave a lasting impression and positive impact. Insulating concrete forms (ICFs) accomplish that while providing innovative design possibilities for single or multistory projects. Learn about the features and advantages of building with ICFs designed as a cost-effective, energy-efficient solution that offers substantial benefits over traditional construction methods.

  • ( ~ 1 hour, 30 minutes ) 

    While all pavements require maintenance and eventually rehabilitation, the modular nature of interlocking concrete pavement (ICP) requires maintenance procedures distinctly different from those for monolithic pavements. This course provides information on surface cleaning, sealers, sealing procedures, and joint sand stabilization. Repair procedures for the subgrade, base, bedding, and paver layers are also provided. Snow management techniques are addressed, and the course concludes with an in-depth look at pavement management using ASTM procedures for establishing a pavement condition index.

  • ( ~ 1 hour ) 

    Designers increasingly focus on creating environments that improve the health, welfare, and productivity of occupants. This includes providing the benefits of daylight, fresh air, and access to the outdoors. This course explores how retractable roofs can extend the use of outdoor spaces year-round by converting them to daylit indoor spaces seasonally or with sudden weather changes. It explains the economic benefits, structure, and operation of various retractable roof types and how they can be customized to suit multiple site sizes and types, including rooftops. The course concludes with a series of case studies.

  • ( ~ 1 hour, 30 minutes ) 

    From classrooms to boardrooms to living rooms, hanging display systems enhance spaces and provide design freedom. This course examines wall hanging systems with a focus on integrating systems in the overall design of a project and includes discussions on system elements, selection criteria, specialty applications, and sustainable design.

  • ( ~ 1 hour ) 

    Recycled rubber flooring is an environmentally responsible material that outlasts many types of traditional commercial flooring products when exposed to normal foot traffic stress. Interior and exterior recycled rubber surfacing products are explored in terms of their sustainable design benefits and applications. The program includes discussions on rubber manufacturing, postconsumer tires, and green building certification systems.

  • ( ~ 1 hour ) 

    Electrical systems that deliver access to permanent power and enable device connectivity are critical components of the design and operation of high-performance buildings. Today’s mobile technology means people can connect and move freely between the indoors and outdoors and integrate their social and work lives anytime, anywhere. This course examines permanent outdoor power delivery offerings, including personal and electric vehicle charging stations, in-ground power boxes, and rooftop boxes, that support the growing demand for connectivity and data and audiovisual communications in outdoor spaces and help to create an outdoor environment that promotes longer stays, stimulates creativity, and increases productivity.

  • ( ~ 1 hour ) 

    No discussion about a material’s sustainability is complete unless it addresses embodied carbon, the carbon dioxide (CO₂) emissions associated with the material over its cradle-to-grave life cycle. Changes made to spray polyurethane foam (SPF) insulation formulations address the impacts of embodied carbon. This course explores the evolution and environmental impacts of SPF blowing agents, the performance benefits of SPF, physical property testing and certifications, and SPF’s potential LEED® v4 contributions. Case studies make evident the performance value of SPF.

  • ( ~ 1 hour ) 

    Health, safety, and welfare: Three simple words, yet three complex concepts. Every healthcare-related facility has a responsibility to provide a sterile, physically safe, and secure, yet nearly always accessible, managed environment just to conduct its daily operations. This course will help you discover effective, scalable access and control strategies specific to the healthcare environment and introduces the latest standards, codes, products, and technologies impacting the design and management of these always complex, life-giving facilities.

  • ( ~ 1 hour ) 

    Roofing technologies have come a long way from labor-intensive BUR systems that achieved watertightness through redundancy. Today’s single-ply membranes are thin, light and reliable, and installation is safe and efficient. This course focuses on thermoplastic single-plies, particularly those that are PVC based, and explores their benefits and limitations as well as the important factors to consider when selecting a roof system, ranging from fastening techniques to warranties to sustainability.

  • ( ~ 1 hour, 15 minutes ) 

    The need to evaluate thermal bridging in a building’s design and performance has become more prevalent because of the increasing requirements for more energy-efficient buildings. This course provides an introduction to thermal bridging, energy code requirements, and the use of thermal break solutions designed to improve energy efficiency in the building envelope.

  • ( ~ 1 hour ) 

    When renovating an existing bathroom, there is a choice between the resurfacing of existing wall coverings, bathtubs, or showers and a complete renovation where all the existing elements are removed and replaced with new ones. This course outlines the pros and cons of each alternative and introduces modern acrylic products as an excellent choice for either. You will learn all the ways that acrylic can be utilized in both new and renovated bathrooms and all the technical information required for a successful design outcome.

  • ( ~ 1 hour ) 

    This course examines the design and benefits of pre-engineered trench drains in a sustainable wastewater management system. Discover how they effectively manage water runoff, prevent ponding, and enhance safety in transportation, industrial facilities, and public spaces while supporting sustainable practices. Explore system types, maintenance strategies, and performance optimization, along with guidance on funding and compliance. Gain the knowledge to implement smarter, safer, and more efficient water management solutions in your next project.

  • ( ~ 1 hour, 15 minutes ) 

    Residential solar power generates clean energy, reduces carbon footprint, protects against rising electricity rates, and protects property from outages, but it is only effective during daylight hours. Adding battery storage to a solar system—called solar plus storage—removes this limitation and moves a home closer to energy independence. In this course, we will review the components of a solar-plus-storage system, including selection considerations for residential rooftop solar and DC-coupled solar batteries. The course also reviews the extended system of monitoring and DC charging.

  • ( ~ 1 hour ) 

    Low Impact Development (LID) has several advantages over traditional stormwater management approaches. Since impervious pavement is the main source of stormwater runoff, LID strategies recommend permeable paving for hard surfaces. The course discusses LID, its goals and principles, and how they are achieved. It provides an overview of permeable pavements, and more particularly, plastic permeable grid paver systems and how they support LID goals.

  • ( ~ 1 hour ) 

    Today's complex steel structures present numerous design challenges, including the challenge of fireproofing appropriately in order to ensure the safety and well-being of building occupants as well as protection of the structure itself. This course outlines the code and testing standards that inform fireproofing choices and the various passive fire protection products and methodologies that can address a comprehensive range of design challenges; insight into the proper specification of fire protection products as well as their ability to improve LEED® certification levels is also provided.

  • ( ~ 1 hour, 15 minutes ) 

    White roofs made of PVC (vinyl) can reflect three-quarters or more of the sun's rays and emit 70% or more of the solar radiation absorbed by the building envelope. Despite protecting and keeping buildings cool in all climates around the world for decades, misconceptions about the energy impact of cool roofs still exist. This course uses the fundamental science behind cool roofs to address alleged issues concerning the performance of cool roof products.

  • ( ~ 1 hour ) 

    Currently, buildings are the single biggest contributor to GHG emissions, accounting for roughly half of all energy consumption in the U.S. and globally. It is crucial to reduce this level of consumption by including high-performance envelope strategies such as shading systems in all new building designs. In this course, we look at shading systems, examine shading and design strategies, and learn tips for successful selection and design.

  • ( ~ 1 hour ) 

    Incorporating bulletproof glass into any facility is a sizable investment; however, it is a small price to pay for the protection of human lives. This course illustrates how to maximize that investment by selecting and installing the appropriate system for the threat level and the functional needs of the client. Discussed are UL protection level ratings; types of bullet-resistant barrier systems and their components; planning, production, and installation of systems; security window film vs. bullet-resistant glass; and project security checklists.

  • ( ~ 1 hour ) 

    This course examines how inclusive outdoor environments and well-designed site furnishings can promote health, safety, and well-being for all individuals. While everyone can benefit from being outdoors, many people experience exclusion due to design barriers in public spaces. Learners will explore strategies and furniture specifications, including layout and materials, that support accessible and inclusive design and contribute to LEED® v5 Building Design and Construction (BD+C), WELL Building Standard™ v2, and SITES® v2 goals. Case studies highlight real-world applications in communities, school campuses, and public spaces. 

  • ( ~ 1 hour ) 

    Multiwall polycarbonate is an extremely versatile glazing material with high impact strength, excellent thermal insulation, and long-term light transmission. Compared to glass, it is much lighter and easier to handle, offering considerable savings in transportation, labor, and building costs. This course examines how multiwall polycarbonate systems can improve thermal energy efficiency and increase daylighting within a space, enhancing occupant productivity, health, and well-being.

  • ( ~ 1 hour ) 

    The architectural uses for perforated metal span a wide variety of interior and exterior applications for residential, industrial, and commercial projects. Reviewed in this course are the applications and the specification considerations for standard and custom perforated metal, along with a discussion on how it is used to sculpt light, control sound, and compose views.

  • ( ~ 1 hour ) 

    Expansion or modification of electrical cabling is rarely considered yet occurs during the lifetime of most buildings. Expansion of in-wall cabling requires additional work, trades, and possibly electrical service interruption, but cable tray facilitates removal and addition of cabling. This course reviews two types of cable tray—ladder tray and wire mesh tray—their components, characteristics, and applications and code-related installation information.

  • ( ~ 1 hour ) 

    In response to a stronger emphasis on natural resources, building efficiencies, and occupant welfare, manufacturers continue to improve design service offerings, product performance, and installation solutions. Fiberglass fenestration meets these demands for residential and commercial design in the built environment. This course explores the performance attributes of fiberglass fenestration, energy efficiency and structural benefits, testing and verification processes, and contributions to healthy building occupancy.

  • ( ~ 1 hour ) 

    The thermal and dual modification of wood are processes used to improve wood’s profile in terms of durability, dimensional stability, overall performance, and inherent resilience and sustainability. The resulting products can be utilized in many building applications, from decking and siding to pergolas and nonstructural beams, as well as paneling, soffits, and interior trim applications. This course explores the science behind the thermal and dual modification of wood. Examples of modified wood and case studies are also reviewed.  

  • ( ~ 1 hour ) 

    This program introduces building retrofits as a method to achieve green building standards by adapting existing structures. While a building retrofit may have several types of interventions, effective air sealing improves the durability of the structure and occupant comfort, health, and safety. This course includes a detailed look at sources of air leakage and the various methods available to address this infiltration. Several real-world examples demonstrate the importance of identifying the source of air leakage, investigating existing conditions, and proper detailing.

Displaying 1 - 25 of 627 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST