Category: THERMAL AND MOISTURE PROTECTION

Displaying 1 - 25 of 199 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST


  • ( ~ 1 hour ) 

    As the market continues to transform the way sustainable buildings are designed, single-skin metal roof and siding products are at the forefront of contributing to healthier built environments. This course breaks down the material inputs and sustainable attributes of single-skin metal roof and siding panels and includes an overview of how the panels can contribute toward earning several LEED ® for Building Design and Construction credits in v4.1.


  • ( ~ 1 hour, 15 minutes ) 

    ICF construction is cost effective and sustainable, and is a superior way to build stronger, quieter, healthier, and more energy-efficient commercial structures. This course explores insulated concrete form (ICF) construction, describing the forms themselves and their construction, performance, and sustainable benefits. Also presented are design guidelines, the installation process, flooring systems, and commercial project applications.


  • ( ~ 1 hour ) 

    Demand for safety, energy efficiency, and contemporary aesthetics is driving building envelope design that incorporates increased amounts of combustible material in cladding, insulation, and water-resistive barriers. This course outlines the difference between insulated metal panels (IMPs) and aluminum composite material (ACM) panels, discusses reaction to fire and fire resistance, addresses building code and building envelope fire testing, and provides global case studies demonstrating the impact of IMPs on the building envelope after exposure to fire.


  • ( ~ 1 hour ) 

    Retrofitting and replacing roof systems are essential aspects of the construction industry and offer opportunities to reduce a building’s energy consumption. Sustainable retrofitting of roofs with durable, energy-efficient materials helps reduce waste and conserve resources while promoting ecofriendly building practices. This course gives an overview of expanded polystyrene (EPS) insulation and innovative roof systems that are designed to enhance building efficiency.


  • ( ~ 1 hour ) 

    Curved elements, such as walls, ceilings, columns, soffits, light covers, clouds, and arches have often been used to add interest to architectural designs. This course outlines conventional methods of framing curves in wood and steel, as well as new methods of framing using flexible track systems. Discussions include options for wall coverings and trims for curved surfaces.


  • ( ~ 1 hour ) 

    Fire control for high-rise building facades requires active and passive systems to work in tandem. This course explains how passive fire protection systems for building envelopes should be used to create fire containment compartments to control fire spread; also addressed are the codes, standards, testing, and compliance routes that apply to verify material and system performance. The course provides detailed illustrations of how the materials must be designed and installed to create effective fire containment compartments and explains how they relate to active fire prevention systems.


  • ( ~ 1 hour, 15 minutes ) 

    A metal roof combines performance and aesthetics to give commercial and residential buildings strength, longevity, and character. This course examines the features and benefits of standing seam metal roofing and explains the factors to consider when selecting a project-specific metal roofing system.


  • ( ~ 1 hour ) 

    The construction of residential and commercial buildings that use less energy to operate and are long lived is a key part of sustainable design. Insulated concrete forms (ICFs) provide the necessary U-factor, airtightness, resiliency, and durability for all building types. Insulated concrete forms in residential and commercial construction projects offer excellent thermal performance and reduced energy consumption and operating costs, while maintaining a very comfortable and healthy interior environment. This course examines the ICF wall, including materials and components, and discusses design considerations and construction.


  • ( ~ 1 hour ) 

    A high-performance building must address four major environmental loads: water, air, vapor, and thermal. The location of the required control layers is critical to effective envelope design. This course explores perfect/universal wall design and the use of single-component insulated metal panels (IMPs) to provide all four control layers. Presented here are discussions on the building envelope, rainscreens, perfect wall design, and IMPs, and more specifically, how to incorporate IMPs into engineered façade systems.


  • ( ~ 1 hour ) 

    Standing seam metal roofing has been used successfully in the United States for centuries, and proper specification is key to realizing its intended performance. Examined here are: the factors driving the demand for standing seam metal roof and wall systems; standing seam panel basics; gauge and grade; oil canning; specification considerations; testing standards; and forming, delivery, storage, handling and warranty.


  • ( ~ 1 hour ) 

    Commercial aluminum wall, window, and roof systems have undergone improvements in recent decades, making them technologically sufficient to meet contemporary standards of durability. In addition to being familiar with the systems’ thermal and other ecological benefits, specifiers need to understand paint chemistry and the difference between powder and liquid coating application methods. It is also important to understand third-party specifications published by AAMA, which cover architectural coatings.


  • ( ~ 1 hour, 15 minutes ) 

    This presentation aims to aid architects, engineers, and specification writers in choosing anchoring systems to comply with the 2022 edition of The Masonry Society’s (TMS) TMS 402 Building Code Requirements for Masonry Structures and the International Building Code® (IBC®).


  • ( ~ 1 hour ) 

    No discussion about a material’s sustainability is complete unless it addresses embodied carbon, the carbon dioxide (CO₂) emissions associated with the material over its cradle-to-grave life cycle. Changes made to spray polyurethane foam (SPF) insulation formulations address the impacts of embodied carbon. This course explores the evolution and environmental impacts of SPF blowing agents, the performance benefits of SPF, physical property testing and certifications, and SPF’s potential LEED® v4 contributions. Case studies make evident the performance value of SPF.


  • ( ~ 1 hour ) 

    Multiwall polycarbonate is an extremely versatile glazing material with high impact strength, excellent thermal insulation, and long-term light transmission. Compared to glass, it is much lighter and easier to handle, offering considerable savings in transportation, labor, and building costs. This course examines how multiwall polycarbonate systems can improve thermal energy efficiency and increase daylighting within a space, enhancing occupant productivity, health, and well-being.


  • ( ~ 1 hour ) 

    The 2022 Inflation Reduction Act shines a light on how low-carbon building material selection is one of the keys to reducing greenhouse gas emissions in the US. High-performance, sustainable products and thoughtful assemblies designed with the building life cycle in mind are critical to the future of our sustainable communities. This course provides a look at how low-carbon and sustainability considerations are activated from product to building design. Factors impacting a sustainable building life cycle are discussed to help architects and owners with building performance that meets the design intent not just on paper but also in use.


  • ( ~ 1 hour ) 

    The use of sustainable materials and products during building design will become the standard within the construction industry, and environmental product declarations (EPDs) and Health Product Declarations (HPDs) help architects and owners make informed decisions for their projects. Insulated metal panels— a prime example of a sustainable product—are one of the most cost-effective solutions to reduce energy and greenhouse gases.


  • ( ~ 1 hour, 15 minutes ) 

    The trend toward more sustainable, healthy, and energy-conserving enclosures has brought building science and moisture management to the forefront of daily conversation for professionals in the construction industry. In this course, we delve into the science behind current practices and explore the role of building envelopes, optimal wall assemblies, and enclosures in vapor, water, air, and thermal control.


  • ( ~ 1 hour ) 

    The construction industry has experienced a significant increase in moisture-related problems in exterior walls. This presentation explains how a rainscreen wall system prevents moisture accumulation within walls by providing a means for drainage and ventilation, thereby prolonging the life of buildings. Discussion topics include air and moisture movement in the building envelope, building code and water-resistive barriers, and stucco and thin veneers in rainscreen systems.


  • ( ~ 1 hour ) 

    There is evidence that the basic ladder was first conceived over 10,000 years ago. Since that time, ladders have evolved to become a versatile product available in a number of materials and forms to suit many functions. This course explains the methods and advantages of using aluminum for ladders, the many ways ladders can be configured to create the safest and most comfortable usage, the various optional accessories available, and the codes and standards that govern and inform their design.


  • ( ~ 1 hour ) 

    The durability of a home is affected by how well it is protected from moisture. This course reviews the methods of preventing and managing moisture in walls, the installation considerations of moisture management products, and the required tests and acceptance criteria for water-resistive barriers.


  • ( ~ 1 hour ) 

    Vinyl membrane decking can prolong the life cycle of various building components; however, performance and durability depend on vinyl membrane selection, specification, and installation. Fortunately, vinyl membrane manufacturers can support architects, contractors, and specifiers through all phases of the project to ensure a successful outcome. This course examines walkable, waterproof roof deck membranes and roofing systems and includes discussions on system characteristics, design considerations, and how to properly specify roof deck membrane systems. 


  • ( ~ 1 hour ) 

    Understanding building physics is critical to proper building envelope design. Examined here are practical concepts for the building designer, including how cladding systems perform across different climate zones and applications. Environmental control layers and hygrothermal loads are reviewed, as is the concept of perfect/universal wall design. The course focuses on how single-component insulated metal panels (IMPs) function as a perfect/universal wall, simplifying wall system design and installation.


  • ( ~ 1 hour ) 

    This course aims to educate learners about the chemistry of spray-applied polyurethane foam (SPF), its various applications in the construction industry, safe handling and installation, and its contribution to sustainable design. The advantages of using SPF are highlighted in terms of its benefits to energy conservation and fire safety. Its role as a high-performance air barrier that satisfies code and LEED® criteria and complies with various standards is also discussed.


  • ( ~ 1 hour, 15 minutes ) 

    The Environmental Product Declaration (EPD) is not just an idea about how to “grade the greenness” of products; it is a well-developed, globally recognized way to make responsible comparisons and decisions regarding sustainable material design and continuous improvement. This course discusses the concept of the EPD as applied to building materials and how to integrate EPDs into design and product selection decisions. Detailed information from different thermal insulation EPDs is used to demonstrate how thermal insulation provides a unique and significant payback in terms of energy and environmental impacts.


  • ( ~ 1 hour ) 

    A naturally occurring radioactive gas, radon is a silent danger to our health. Colorless and odorless, it enters homes and structures through openings in the foundation and below-grade walls, becoming trapped in basements and other poorly ventilated areas. This course looks at methods of controlling radon, how it is addressed in building codes, the advantages of closed-cell spray polyurethane foam (ccSPF) over other insulation materials, and proper installation techniques.

Displaying 1 - 25 of 199 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST